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Abstract

Are global temperatures on a warming trend? It is diffi cult to be certain
about trends when there is so much variation in the data and very high
correlation from year to year. We investigate the question using statistical
time series methods. Our analysis shows that the upward movement over
the last 130-160 years is persistent and not explained by the high correlation,
so it is best described as a trend. The warming trend becomes steeper after
the mid-1970s, but there is no significant evidence for a break in trend in
the late 1990s. Viewed from the perspective of 30 or 50 years ago, the
temperatures recorded in most of the last decade lie above the confidence
band of forecasts produced by a model that does not allow for a warming
trend.



1 Introduction

Records show that temperatures have increased globally over the last 100 to 150
years. An interesting question is whether this rise is really an upward trend, that
is a systematic or persistent tendency to move in the one direction. It appears that
the warming trend has become steeper in the last 30 to 50 years or so, although it
has also been suggested in the public debate that the trend has all but disappeared
in the last decade.

This paper examines such questions using the tools of time series analysis.
There are several series of global temperatures available from different sources,
none more authoritative than the others. One labelled T3GL is compiled by the
Climatic Research Unit at the University of East Anglia and the Hadley Centre of
the UK Met Offi ce. It is a global average of combined land and sea surface temper-
atures over widely dispersed locations, in a time series from 1850 to date, expressed
as the deviation from the average of the period 1961-1990. These deviations are
called “temperature anomalies”, but we simply refer to them as “temperature
data”. We only look at the annual (Jan to Dec) average, although a monthly
series is also available. The other two series we use are labelled NCDC and LOTI,
which are temperature anomalies over land and ocean compiled by the National
Climatic Data Center of the US Department of Commerce, and by the Goddard
Institute for Space Studies at NASA respectively. The latter two series cover the
shorter period from 1880 to date.1 The plots of the three series are provided in
Figure 1.2 While the range of the series (i.e. their maxima and minima) may not
be comparable because the averages on which the anomalies are based are not the
same for all three series, it can be seen that their movements are quite similar.

We examine a temperature record as a time series of observations, but with
scant regard for the nature and source of the data. Thus nothing in our analysis is
informed by the science of climate change, nor by other theories that may explain
the movements in the series, nor by other data such as fossil or geological records.
We do use the fact that the records were made sequentially at annual intervals
since 1850 or 1880. We also recognise that there are two interesting states to
be considered: one in which the variable has a tendency to revert to its long-
run average, perhaps after many years, and another where there is some persistent
upward movement, possibly varying in intensity. A finding that confirms a warming

1Data and documentations for the three series T3GL, NCDC and LOTI are avail-
able at http://www.cru.uea.ac.uk/cru/data/temperature/, http://www.ncdc.noaa.gov/cmb-
faq/anomalies.html and http://data.giss.nasa.gov/gistemp/ respectively. Our copies were down-
loaded on 28 February 2011.

2All figures and estimation results reported in this paper are produced using Eviews version
7. An Eviews program file containing all command lines that reproduce the estimated equations
and graphs reported in this paper is available from the authors upon request.
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Figure 1: Global Temperature Anomalies
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trend may be cause to seek an external explanation, but this investigation of the
existence of a warming trend relies on the temperature data alone.

2 Is there a warming trend in the data?

2.1 Interpreting the question

A seemingly simple question such as “Is there a warming trend in global tem-
perature data?”may be clear enough in ordinary discourse, but the analyst who
does not have any knowledge of possible underlying mechanisms that govern the
dynamics of temperatures and needs to formulate this question in terms of an
hypothesis about a purely statistical model of the data would find this question
ambiguous. Technically, trend is a periodic component that takes infinite time
to complete one revolution. This definition makes two things apparent. First, it
is much harder to learn about trends than to estimate periodic components that
repeat themselves frequently, say every 4 to 8 years, from a finite sample of obser-
vations. This is because a modest size sample may contain several re-occurrences
of 4 to 8 year cycles, but a finite sample can only contain one observation of the
trend —and moreover an incomplete observation at that! Second, it is impossible
to distinguish trend from a periodic component of large but finite period based on
a finite sample. For example, with only 150 observations, cycles that take 300 or
more years to complete are indistinguishable from trend.

The technical definition of a trend as a cycle with infinite period has another
implication which highlights its difference with our ordinary understanding of a
trend. A time series with wandering behaviour, like a random-walk, which at each
point has equal probability of going up or going down, also satisfies the technical
definition of a trend. In fact, such a component is often called a “stochastic
trend.”However, a variable that is equally likely to go above its current level and
stay above it for a long period, or to go below its current level and stay below it for
a long period is not deemed to have a trend in the ordinary sense. In particular,
in the context of the temperature data given that the question is concerned with
“a warming trend,” it is obvious that a purely wandering behaviour around the
current level is not of interest. Hence, we interpret the question as “Is there a
systematic or persistent tendency in the temperature to move above its current
level at every period?”

2.2 Towards answering the question

2.2.1 Simple linear trend models

If we start with the simplest model of a trend as a straight line on this untrans-
formed scale, we could fit regression equations to the series to see if there are
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statistically significant trends. The estimated equations for the three series are
(with standard errors in parentheses below the estimated parameters):

T3GLt = −0.651
(0.144)

+ 0.0058
(0.0014)

t+ ut

ut = 0.606
(0.062)

ut−1 + 0.249
(0.063)

ut−4 + εt (1)

R2 = 0.85, σ̂ = 0.103, λ̂1 = 0.92

NCDCt = −0.513
(0.125)

+ 0.0075
(0.0014)

t+ ut

ut = 0.585
(0.071)

ut−1 + 0.243
(0.069)

ut−4 + εt (2)

R2 = 0.89, σ̂ = 0.088, λ̂1 = 0.91

LOTIt = −0.502
(0.108)

+ 0.0072
(0.0013)

t+ ut

ut = 0.502
(0.075)

ut−1 + 0.296
(0.076)

ut−4 + εt (3)

R2 = 0.87, σ̂ = 0.095, λ̂1 = 0.90

Interestingly, a model comprising a linear trend plus an autoregressive cyclical
component with the same lag structure is chosen for all three temperature series
by the methodology adopted here. This methodology, a version of the procedure
of Hannan and Rissanen (1982), starts with finding a pure autoregressive model
for the cyclical component of the series that can whiten the correlogram of the
residuals. Then it considers all possible autoregressive and moving-average models
with less or equal lag structure than the initial autoregressive model, using a
model selection criterion that penalises large models. Here we use the Schwarz
criterion or BIC for this purpose. Inspection of correlograms and histograms of the
residuals and formal specification tests such as a Breusch-Godfrey serial correlation
test, a Jarque-Bera normality test and a Ramsey linearity test all support these
models. In all three estimated models, the coeffi cient of linear trend is positive
and statistically significant, thus indicating a warming trend. Such models of a
stationary autoregressive process about a linear trend are called “trend stationary.”

However, the statistic λ̂1 reported below each of the three equations suggests
that there may be a problem. This statistic is the largest inverted root of the
estimated autoregressive process and it is a measure of persistence in the deviations
of each series from its linear trend. The closer to one λ̂1 is, the more persistent
these deviations become. The extreme case of wandering behaviour corresponds
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to this root being equal to one, which is known as the series having a “unit root”.
Since the estimate of this parameter from a finite sample is biased downwards, it
may well be that the above temperature series each has a unit root. Very strong
dependence from one period to the next implied by a unit root has the effect of
letting the series wander far and wide, with diversions that can look like trends at
least for a short time. This means that if the series indeed has a unit root, but
we have modelled it as stationary deviations from a linear trend, the confidence
implied in the estimated models above about the linear trend may indeed be false.

One may ask if we could rule out wandering behaviour (i.e. unit roots) in
temperatures on a-priori grounds. After all, it is unsettling to think about tem-
peratures the same way we think about stock prices. However, if we remember
that a unit root process is observationally equivalent to a process with a dominant
stochastic cycle with periodicity that exceeds the span of our sample, then a unit
root is just a proxy for long cycles. It is a well-established principle in time series
analysis that statistical inference is more accurate if we approximate a near unit
root by a unit root than by a stationary process. Looking at it this way, a unit
root model is just a vehicle for accounting for the strong persistence in the series
and getting better measures of confidence.

2.2.2 Can unit root tests give us some information?

In a series xt that has a unit root, its differences ∆xt = xt−xt−1 follow a stationary
process. Hence a process with a unit root is also called a difference-stationary or an
integrated process. In the 1980s several statistical tests were designed to distinguish
a difference-stationary from a trend-stationary process. A good summary of these
tests with some discussions that are particularly relevant for our analysis is in
Stock (1994). If it is found that apparent trend can be ascribed to a unit root,
then what seems to be trend might be just high-correlation wandering that is just
as likely to go down as go up. An external explanation of the apparent trend would
no longer be needed.

Most of the available unit root tests consider the null hypothesis of a unit root
against a stationary or a trend stationary alternative. Given our discussions above
about the possibility of observational similarity of a unit root process and a process
with a deterministic trend in finite samples, it is not surprising to know that the
finite sample properties of unit root tests are poor. The performance of these tests
depend crucially on the type of trend and the period of cycles in the data. Stock
(1994) emphasises the importance of properly specifying the deterministic trends
before proceeding with unit root tests, and advises that “this is an area which
one should bring economic theory to bear to the maximum extent possible.” In
our context, the responsibility falls on the shoulder of climate theory rather than
economic theory, an area that we know nothing about. Here, we proceed with
simple assumptions about trends.
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The available unit root tests differ by their treatment of residual serial corre-
lation at higher frequency. In the absence of an assumed trend, both the Dickey-
Fuller test and the Phillips-Perron test indicate strongly the presence of a unit
root, as might be expected from the data plot. However when a linear trend is
allowed, these tests give conflicting results. The augmented Dickey-Fuller test in-
dicates that a unit root cannot be rejected at any of the usual decision levels (with
3 or 4 augmentation lags). The GLS version of the Dickey-Fuller test agrees. In
contrast, the Phillips-Perron test for the same situation rejects the unit root in the
presence of a trend (with 3 or 4 lags). The results are the same for all three series.
This apparent conflict among unit root tests may be attributed to the severe size
distortion of the Phillips-Perron test in the presence of moderate negative MA
roots, also discussed in Stock (1994).

The question we are trying to answer though is not about a unit root in the
temperature data, it is about a tendency of the data to drift upwards. Hence, the
unit root tests by themselves do not answer our question. If we trust the Phillips-
Perron test, then we can trust equations (1), (2) and (3), which clearly show a
positive and highly significant trend in the temperature data. However, if we
dismiss the result of the Phillips-Perron test because of its size distortion in finite
samples and trust the result of the augmented Dickey-Fuller test, the presence of a
unit root does not exclude the possibility that there may be a deterministic trend
in the data as well. So we need to do further analysis.

2.2.3 Controlling for extremely high persistence, is there a warming
trend?

For a difference-stationary process, the absence or presence of a deterministic linear
trend is a question about the mean of the differenced series. A non-zero mean
in a differenced series becomes a constant amount of drift added to the series
each period, i.e. a deterministic trend component. This can be seen algebraically
because we can write a difference stationary process as ∆xt = α + zt where α is
the mean of ∆xt and zt is a zero mean stationary process, and this implies

∆xt = α + zt =⇒ xt = xt−1 + α + zt

=⇒ xt = xt−2 + α + zt−1 + α + zt

...

=⇒ xt = x0 + αt+

t∑
j=1

zj ,

which shows that xt has a deterministic trend with coeffi cient α, the mean of ∆xt.
The last term in the expression for xt is the integrated component that embodies
the unit root in xt. Therefore to answer the question about the warming trend we
need to answer if the mean of the first difference of the temperature series is zero or
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Figure 2: First differences of temperature series

not. A natural approach is to build time series models for the serial correlation in
the differenced series, and to consider the significant of intercepts in those models.
First differences of the three temperature series are plotted in Figure 2.
Again, using the Hannan-Rissanen method, we find that an ARMA(0,2) fits all

three differenced series. This implies ARIMA(0,1,2) models for the actual series.
The estimated models are (with standard errors in parentheses below the estimated
parameters):

∆T3GLt = 0.0051
(0.0028)

+ εt −0.396
(0.077)

εt−1 − 0.274
(0.077)

εt−2 , σ̂ = 0.104 (4)

∆NCDCt = 0.0057
(0.0032)

+ εt −0.385
(0.086)

εt−1 − 0.224
(0.086)

εt−2 , σ̂ = 0.091 (5)

∆LOTIt = 0.0067
(0.0025)

+ εt −0.507
(0.087)

εt−1 − 0.202
(0.087)

εt−2 , σ̂ = 0.096 (6)

Diagnostic tests for linearity, adequacy of dynamics and normality support the
three equations. Comparing these results with those in equations (1), (2) and (3),
we see that the evidence for a positive linear trend is much weaker in the presence
of a unit root. While the t-statistics of the coeffi cient of the trend in equations (1),
(2) and (3) were all over 4, implying a highly significant and precisely estimated
positive trend, the t-statistics for the drift terms (the intercepts) in equations (4),
(5) and (6) are 1.83,1.78 and 2.65 respectively. While these smaller values show
that there is not as much information about the linear trend when a unit root
is assumed, they are suffi cient to reject the null hypothesis of zero drift against
a one-sided alternative of a positive drift at the 5% level of significance. Thus
the data indicate the existence of a warming trend also in this context. It is
important to note that, even if the drift was found to be zero, the unit root in this
model implies wandering (non-stationary) behaviour with no tendency to revert
to average or typical temperatures in the long run.
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3 Has the warming trend become steeper?

With our lack of knowledge about the underlying mechanisms to explain trends in
temperatures, and with the generic diffi culty of uncovering a trend from a finite
sample of observations, the question of determining breaks in the trend becomes
an enormously harder question to answer. This is because it will involve not only
uncovering trends from smaller segments of the sample, but also comparing these
trends and determining if they are the same or statistically different. Moreover, if
distinguishing unit roots from linear trends was diffi cult because unit roots could
sometimes behave similar to a linear trend in a finite sample, distinguishing them
from a piecewise linear trend is much more diffi cult.

Even if one assumes that the trend in data is piecewise linear and continuous,
testing the hypothesis that the trend has become steeper since a specific year that
is chosen after looking at the data is not as straightforward as performing a simple
t-test or an F -test of significance of a parameter or a set of parameters (sometimes
called a break-point test or a Chow test). We explain this problem below.

3.1 The statistical significance of data-dependent questions

The statistical theory of hypothesis testing is based on the assumption that the
question that is confronted with the data (i.e. the null hypothesis) is formulated
independently of the test sample. If the question is determined endogenously from
the test sample, then that sample has no independent information to validate or
reject the hypothesis. For example, if after looking at the results of equation (1)
one asks “Is the coeffi cient of trend 0.0058?”obviously we cannot use this sample
to test this hypothesis with a t-test. A similar problem arises when we look at
the plots in Figure ?? and then ask questions such as: “Was there a cooling trend
between 1880 and 1910?”or “Was there a warming trend between 1910 and 1945?”
or “Was there a cooling trend between 1945 and 1975?”or “Has the trend become
steeper since 1975?”or “Has the trend disappeared since the extremely hot year
of 1998?”. The standard statistical tests will overstate the apparent significance of
these hypothesised events because these questions are not posed exogenously, as
assumed by the statistical theory, but are instead endogenous results of the local
behaviour of the very data that are used for testing them. Endogenous questions
arise often in practice. For example, the question of “Are business cycles dead?”
became popular a couple years ago among economists precisely because of a 15
year experience of positive growth. It is natural to ask such questions and they
may lead us to new discoveries. But to test the statistical significance of such
hypothesis with standard statistical procedures using the same data that gave rise
to the question leads to incorrect inference. In particular, when a time series has
extremely high persistence, getting too excited about a run of movements in one
direction and extrapolating that into the future can be dangerous.
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3.2 Data-determined trend breaks

Rather than peeking at the data and incorrectly evaluating a question about trend
as if the question was exogenous (as assumed in the standard assessments of sta-
tistical significance) we might ask: When does the most remarkable break in the
trend in this series appear to occur? Can we determine the statistical significance
of this break taking into account that it has been data-determined?

The simplest approach would be to fit a model that accounts for the serial
correlation while allowing one break point where the trend can change. This ap-
proach could be adopted with a model that is stationary around the deterministic
trend, such as models (1)-(3) with an additional trend variable to allow the trend
coeffi cient to change. Alternatively, we could specify a model with a unit root
component, such as models (4)-(6) with an additional dummy variable to indicate
the break point. In either case we can search over all possible break points (ex-
cluding the extreme ends of the series) to see where a break might best be located.
One criterion might be the model fit, as measured by the value of the maximized
likelihood. In this situation where every model has the same degree of parame-
terization, this approach is equivalent to choosing the result by minimum AIC or
BIC, or by most any other selection criterion. Another criterion for judging the
most remarkable break point is the magnitude of the usual test statistic (t or F
or asymptotic χ2) for testing the statistical significance of the coeffi cient of the
variable that indicates the break.

Irrespective of the criterion used to judge the break point, and for all three of
the data series, the most remarkable break point in the trend stationary models
is in the mid-1970s. The next most notable candidate for a single break in the
trend, disjoint in time from that region in the 1970s, is located in 1909-1913. There
is nothing to suggest that anything remarkable has happened around 1998. The
evidence from the unit root models tells the same story. The magnitudes of the
most extreme t-test statistics are shown in Table 1.

Data Set
. . .Model Trend stationary Unit root

T3GL 3.74 2.66
NCDC 3.39 2.68
LOTI 4.51 4.02

Table 1: Maximum values of the break point t-statistics

The exercise of searching for the most extreme evidence of a break in trend
along the series shows that the usual criteria for assessing statistical significance
do not apply. In the case of the T3GL series for instance, there are 141 estimation
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runs being examined (each taking the first four observations fixed and allowing
a trend break at one year in the remaining 157 observations except where sub-
samples of eight or fewer observations would remain at either end of the sample).
At one extreme, if we had 141 independent random draws of the test statistic, the
probability that at least one such draw will exceed the usual 1% significance point
is not 1%, but instead 76%. And at the nominal 5% level of significance, one would
almost certainly find at least one draw to reject the no breaks hypothesis. Even
with a nominal significance level of 0.1% the actual probability of finding some
‘significant’extreme value is 13%. To preserve actual significance levels of 1% and
5% requires setting nominal significance levels of 0.007% and 0.036% respectively.
In the case of the standard normal distribution used as an asymptotic approxi-
mation to the distribution of a t-statistic, the 5% significance level corresponds to
a two-sided critical value of 3.57 (not the nominal value 1.96) and the 1% level
corresponds to a two-sided critical value of 3.97 (not the nominal value 2.58).

The actual test statistics obtained here for the individual tests are not inde-
pendent because of the overlapping samples. The correct critical values will be
somewhere between the nominal values and the adjusted values obtained by as-
suming independence. A better approximation to critical values in this case is
given in Bai and Perron (2003), where the two-sided 10% critical value is 2.98, the
5% critical value is 3.21 and the 1% critical value is 3.66. Against these bench-
marks, the extreme test outcomes in 1974-1978 as shown in Table 1 would be
judged statistically significant breaks in trend if we assumed that the series were
stationary around their piecewise linear trends. (The estimated trend function for
the T3GL series is graphed in Figure 3.) However, if we assumed that the series
had unit roots, only the break in the LOTI series would be judged significant.
In either of the trend stationary or the unit root models, using the critical values
reported in Bai and Perron (2003) to test the hypothesis of a single break against
the alternative of two breaks, no other data-determined break in these series is
judged to be statistically significant.

4 An alternative way to address the question of
a warming trend

Another way to address the question of a warming trend is to put ourselves in
the place of an analyst 50 years ago and produce confidence bands for the future
given information available at that time from models that assume no warming
trend. We can then ask whether the realised history in the last 50 years would fit
within these bands. In particular, we ask if one assumed that there was no drift
in the data, and we attributed all movement in the data to its strongly persistent
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Figure 3: The most dramatic data-determined broken trend for the T3GL series
based on the trend-stationary model

stochastic component (an assumption that is not rejected by the pre-1961 data
for all three series), would the realised temperatures in 1961-2010 be considered
extremely unlikely and surprisingly hot? It is important to remember that while
a stochastic process with a unit root can wander anywhere in infinite time, in
any finite period of time its movements relative to its starting point are bound
by a probability law. This allows us to provide a 95% interval forecast for 1961-
2010 and examine if the realised 1961-2010 temperature history fits within this
band. Figure 4 presents this for the three series.3 We can see that the realised
temperatures in most of the past 10 years lie above the no-drift forecast intervals.
This re-iterates the results of the previous section: there is suffi cient evidence in all
three temperature series to reject the hypothesis of no drift in favour of a warming
trend in global temperatures. If we look at this question from the perspective of
30 years ago, we reach the same conclusion.

3The confidence bands in these graphs are calculated using the “dynamic forecast”option in
Eviews and they do not incorporate estimation uncertainty.
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Figure 4: Interval forecasts for 1961-2010 allowing for high persistence but no drift
and the realised values
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5 Conclusion

We conclude that there is suffi cient statistical evidence in the temperature data
of the past 130-160 years to conclude that global average temperatures have been
on a warming trend. The evidence of a warming trend is present in all three
of the temperature series. Although we have used unit roots and linear trends
as a coordinate system to approximate the high persistence and the drift in the
data in order to answer the questions, we do not claim that we have uncovered the
nature of the trend in the temperature data. There are many mechanisms that can
generate trends and linear trends are only a first order approximation (see Granger
1988). It is impossible to uncover detailed trend patterns from such temperature
records without corroborating data from other sources and close knowledge of the
underlying climate system.
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