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1. Introduction

Since its introduction in the study by Carroll et al. (1997), the Generalized Partially
Linear Single-Index (GPLSI) model has received constant attention and been studied by
many researchers; see Yatchew (2003) and Gao (2007), for example. Furthermore, Xia et al.
(1999) provide a useful extension to the model; in this paper, let us refer to it as the extended
GPLSI (EGPLSI) model. The EGPLSI model allows for the well-known advantages of a
Single-Index (SI) model and a Partially Linear (PL) model (see the discussion in Chapter 2
of Horowitz (2009) for details) and also enables the analysis of the so-called shape-invariant
specification as will be illustrated in Section 3. Unlike its GPLSI counterpart, the EGPLSI
model concedes instead a more extensible specification, which includes the shape-invariant
one as a special case.

Recently, considerable effort has been made in studies of the shape-invariant specifica-
tion in the literature. While some interesting theoretical studies can be found in Hardle
and Marron (1990), and Pinkse and Robinson (1995), the best known application is in the
empirical demand study literature such as Blundell et al. (1998), Blundell et al. (2003) and
Blundell et al. (2007). In the context of empirical demand studies, this specification enables
the analysis of both a scale coefficient and a shift coefficient of a household characteristic in
the modelling specification, which is coherent with the consumer theory; see Blundell et al.
(1998), Pendakur (1999), Blundell et al. (2003) and Blundell et al. (2007) for detail.

With regard to nonparametric estimation techniques employed, the study by Carroll
et al. (1997) propose the local constant kernel estimation method, while Xia and Hérdle
(2006) consider the local polynomial estimation method of Fan and Gijbels (1996) to esti-
mate the GPLSI model. On the other hand, Xia et al. (1999) employ the local constant
kernel estimation method to estimate the EGPLSI model and to examine its identification
condition. However, these methods are not directly applicable to empirical studies in various
economic areas, since they do not take endogeneity into account. The so-called “endogeneity
problem” is a technical name given by econometricians to a problem that is well known in
developmental studies and empirical economics; see Nakamura and Nakamura (1998), and
Deaton and Muellbauer (1980) for some excellent surveys. For example, the endogeneity of
total expenditure is a well-known issue in the empirical demand study literature; see Blundell
et al. (1998) and Blundell et al. (2007) for detail. If present, it might cause an inconsistent

estimation of the model’s scale coefficient and lead to nonidentification of structural Engel



curves. Recently, various methods of addressing endogeneity in non and semiparametric
models have been discussed in the literature. Among these, a couple of the most popu-
lar methods are the nonparametric instrumental variables (IV) estimation and the control
function (CF) approaches; see Blundell and Powell (2003) for an excellent review of these
methods.

In the current study, we intend to provide two main contributions to the econometric
literature. Firstly, we aim to introduce a method to address endogeneity in the estimation
of the above-mentioned EGPLSI model. In particular, we aim to do so by establishing
a CF approach based on (i) the Robinson (1988) and Speckman (1988) type of the two-
stage estimation procedure and (ii) the widely-used triangular structure of Newey et al.
(1999), Pinkse (2000), Blundell and Powell (2004), and Su and Ullah (2008). The two-
stage estimation procedure allows us to conveniently identify the source(s) of endogeneity
and hence systematically address it in a partially linear type of semiparametric model via
the partialling-out process. Furthermore, we present in detail below how imposition of the
triangular structure enables us to identify the unknown structural relationship (e.g. the
structural Engel curves) in a simple nonparametric additive structure which can be conve-
niently estimated using the marginal integration technique of Linton and Nielsen (1995),
and Tjgstheim and Austad (1996). In spite of the involvement of an endogeneity control
variable which is not observable in practice and hence is non-parametrically estimated for
the flexibility (as in Newey et al. (1999), and Su and Ullah (2008)), we derive the asymptotic
normality and the y/n-consistency of parameter estimators of both the parametric coeffi-
cients and the index coefficients. More importantly, we show that the practicality of the
study in Xia et al. (1999), which allows the same smoothing parameter in the estimation of
the index coefficients and the unknown structural function, is still applicable to the EGPLSI
model with the endogeneity control variable generated.

Secondly, we also intend to provide a further contribution to the economic literature,
particularly on the cross sectional relationships between expenditure on specific goods and
the level of total expenditure. To achieve this objective, we employ our newly established
methods to conduct a semiparametric analysis of shape-invariant Engel curves in Australia.
It should be noted that within the context of the empirical demand study, Blundell et al.
(2007) address the endogeneity of the total expenditure by using the nonparametric IV

method through which some regularity conditions are imposed on the inversion matrix and



a constraint is placed on the space of the reduced relation to make it compact. Blundell et al.
(2007) show the y/n-consistency of the estimators of both the scale and the shift coefficients.
On the other hand, Blundell et al. (1998) address endogeneity by using the CF approach by a
parametrically generated endogeneity control variable. We will clearly explain the difference
between our method and that of Blundell et al. (1998) below. Furthermore, because of the
importance of this topic, even though an effective tool is lacking for testing endogeneity in
semiparametrics, an additional advantage of our method is that it enables a rather simple
procedure to be established for the purpose. This is brought about mainly by its ability to
identify and unentangle the effect of endogeneity in the model. This simple tool relies on
the variability bands being constructed over the estimates of the endogeneity measures (to
be defined below) as the means of testing their statistical significance.

The structure of the rest of the paper is as follows. Section 2 immediately below discusses
the first contribution in detail, i.e. introduction of an alternative method for addressing
endogeneity in the estimation of the EGPLSI model. Section 3 concentrates on the second
contribution, i.e. the empirical study of the cross sectional relationships between specific
goods and the level of total expenditure. We conclude the paper with a summary of our
results in Section 4. All mathematical proofs of the main theoretical results of the paper are

presented in the Appendix.

2. EGPLSI Model with/without Endogeneity

Let us begin the current section with a brief review of the EGPLSI model and its esti-
mation procedure as often discussed in the literature (see Xia et al. (1999) and Gao (2007),
for example). We introduce endogeneity into the model and then discuss our alternative CF
based estimation procedure in Section 2.2. We present the main theoretical results of this
paper, which focus on the asymptotic properties of estimators of the model in Section 2.3.
All mathematical proofs are discussed in the Appendix. Finally, the finite sample properties

of the estimators are investigated in Section 2.4.

2.1. EGPLSI Model without Endogeneity

Generally, without the presence of endogeneity, the EGPLSI model can be defined as:

Y; = X6 + 9(X[w) + €, (2.1)



where (X,Y) is a R? x R-valued observable random vector, 3y and aq are unknown vector
parameters, and ¢(-) is an unknown link function such that ¢ : R — R. The exogeneity
assumption suggests that F(e;|X;) = 0, which implies that E(¢;|Vyo) = 0 for Vo = X/ ap.
Throughout the rest of the paper, let us assume that the random sample {(X/ Y;);i =
1,...,n} is independently and identically distributed (i.i.d.). Furthermore, let f(z) and
f(vg) denote the density functions of x and vy, respectively, with the random argument of
X;. We also assume that A, C R? is the union of a finite number of open convex sets such
that f(z) > M, on A, for some constant M, > 0. Finally, note the identification condition of
the EGPLSI model investigated in Xia et al. (1999), the orthogonality of the two coefficients
so that fy L ap with ||a]| = 1.

Given « and 3, we smooth the nonparametric index component out from the structural
relation (2.1) to obtain the minimising objective function for both unknown coefficients as
shown below:

minJ* (o, 8) = minE (W — U;'B)°, (2.2)
where W =Y, — E*(Y;|V;) and U} = X; — E*(X;|V;) with V; = X/a. In order to estimate
those unknown parameters and functions involved in (2.1), we need to obtain a feasible

version of (2.2). Firstly, consider the nonparametric kernel estimators of E*(Y;|V;) and

E*(X;|V;) of the form:

kn(Vi —v)Y; . ok (Vi—0)X;
= ZX’EAZ h( ) and E*(J?‘U) _ ZXZGAZ h( ) 7
ZXZ'EAQC kh(‘/l - /U) ZXzG.Ax kh(‘/z — U)

where kp(-) = k(-/h), k() is a kernel function satisfying Assumption 2.4 below and & is a

E*(ylv) (2.3)

bandwidth parameter. Next, we turn to the corresponding estimators based on the usual
cross-validation criterion. Let the estimators in (2.3) be the leave-one-out estimators by
omitting (X, Y;, V;):

Zj;ﬁi kn(V; = v)Y; P Zj;éi kn(Vy — v) X

and E}(x|v) =
Zj;«éi kn(Vi — v) Zj;éi kn(V; = v)

Let A,, denote the set of all unit g-vectors. Given C' > 0 and 0 < C} < Cy < 00, A, ={a €
A, ¢ |la = apl| £ Cn7Y?} and H, = {h: Cin™Y/® < h < Cyn~/5}. These definitions are

motivated by the fact that, since we anticipate that &* is y/n-consistent and we expect h to

E; (yl) =

(2.4)

be close to hy ~ const n'/®, we should look for a minimum of the feasible objective function

of (2.2), i.e. J(a,h), defined in Step 2.1.3 of Procedure 2.1 below. The feasible objective

1/2

function involves « to be distant from g by the order of n="/* and h to be approximately

b}



equal to a constant multiple of n=1/%; see Hirdle et al. (1993) and Xia et al. (1999), for
example. The estimation procedure of (2.1) can be summarised as follows. Hereafter, let us

collectively refer to these estimation steps as ”Procedure 2.17.

Procedure 2.1

Step 2.1.1: Given «, obtain the feasible objective function of (2.2) by estimating E*(y|v)
and E*(z|v) by E*(y|v) and E*(z|v) in (2.4).

Step 2.1.2: Define the feasible objective function of (2.2) as:

) = L3 (e - o) (2.5)

1=1

where W = Y; — E*(Y)|V;) and UF = X; — E*(X;|V;). Perform the least squares (LS)
estimation on (2.5) to obtain §* = (Sgre)” Sgreyipe, where Sup =1 5" A;Bl, Sa4 = Saa, and
(Sp.)” is a generalised inverse of (Sp.).

Step 2.1.3: Given B* from the previous step, obtain &* and h by minimising the feasible
objective function:

n

A 1 ~ A A
min  J*(o,h) = min —Z(M/z‘*_Ui*lﬁ*)Q'

Q€An,heHy, Q€An, heHR T

=1

Step 2.1.4: Re-estimate 3y using &* and h from Step 2.1.3 as in 2.1.2:

B:é = <S03>_ SU;;Wd*v

where Wa-; = Y; — EX(Y;|[Vi) and Us-; = X; — EF(X,|V;) with V; = X/a, EF(Y;|V;) and
E*(X;|V;) obtained by replacing « in (2.4) with &*.
Step 2.1.5: Given a* and B2, estimate the unknown structural function g(-) by §*(0) =
E*(y|d) — E*(x[0) B u

The benefits of Procedure 2.1 of Xia et al. (1999) relies on the Robinson (1988) and
Speckman (1988) type of the two-stage estimation procedure and the direct extension of the
study in Hardle et al. (1993) to the EGPLSI model. On the one hand, the former conveniently
allows for the identification of the source(s) of endogeneity and hence a systematic way of
addressing endogeneity in partially linear semiparametrics due to the partialling-out process
as discussed above. On the other hand, the latter provides an empirical and practical

way of estimating single-index semiparametrics. The study of Héardle et al. (1993) allows



for the same bandwidth for the optimal estimation of &* and ¢*(), and the simultaneous
estimation of index coefficients and a smoothing parameter. Procedure 2.1 accommodates
this practicality of Hérdle et al. (1993) in the EGPLSI model. In the next section, we show
that these benefits of Xia et al. (1999) can be extended to the proposed estimation procedure
in the current paper to address endogeneity in the EGPLSI model.

2.2. EGPLSI Model with Endogeneity

Let us now introduce endogeneity into the EGPLSI model, (2.1). There are two poten-
tial sources of endogeneity, namely endogeneity in the parametric and the nonparametric
components. Hereafter, let us refer to these as parametric-endogeneity and nonparametric-
endogeneity, respectively. Clearly, these two types of endogeneity may also occur simul-
taneously. To simplify the argument, we assume that the parametric regressors belong to
a subset of X, i.e. X; C R% for ¢; < ¢, such that the regressors are exogenous with
E(e|x1) = 0. Nonparametric-endogeneity exists for the case where E(e|z) # 0, which im-
plies that E(elvg) # 0. Unless the parametric regressors are endogenous, the LS estimation
results in the consistent estimation of the parametric coefficients even with nonparametric-
endogeneity in the model due to the partialling-out process in the two-stage estimation
procedure of Robinson (1988) and Speckman (1988). Note also that, if present, parametric-
endogeneity can be conveniently dealt with using the parametric IV estimation; see also
the discussion in Chapter 16 of Li and Racine (2007), for example. Nonetheless, Procedure
2.1 does not take the above mentioned nonparametric-endogeneity into account and may
therefore result in inconsistent estimators for the index coefficients and in nonidentification
of the unknown structural function. The formal result is due to similar reasoning to that in
the classical linear regression model; see also the discussion in Chapter 8 of Amemiya (1985)

for details. Given [, reconsider the objective function of (2.2), particularly the following:

J(a) = E(W; —U"Bo)*

= El{g(Voi) — 9(Vi)} + & — E(ei| V7))

= E{g(Ve) = 9(V)}* + E{ei = B(&|Vi)}* + 2B [{g(Vin) — 9(Vi)} {e; — E(ei|Vi)}]
Arqi+ A2+ Ars

The feasible objective function in Step 2.1.3 of Procedure 2.1 does not converge to the

function which provides consistent estimators of the index coefficients, since A;3; may not



converge to 0 in probability, due to endogeneity, i.e. FE(e|z) # 0; see Amemiya (1974),
for example. When there is no endogeneity, the estimator of A, 3; converges to 0 and the
estimator of A;;; converges to the unique function providing the minimum value of the
objective function with respect to the index coefficients in probability. Note that A;s;
is not relevant to the index coefficients. Here more importantly, the unknown structural
function is not identified. This is mainly because E(e|x) # 0, the conditional expectation of
e on any function of z is not 0. This leads to the conditional expectation relation E*(y|v) —
E*(x|v)' B = g(v)+ E(e|v), and E(e|v) # 0. Hence it is the case that E*(y|0) — E*(x]0)3* =
G5 (0) + E(e]0) 4 g(vo), where 4 denotes no convergence in probability.

In order to obtain consistent estimators of the index coefficients and to recover the
unknown structural function when nonparametric-endogeneity is present, we propose in the
current section an alternative estimation method which is based on the CF approach; see
the discussions in Newey et al. (1999), Blundell and Powell (2004), and Su and Ullah (2008)
for its application to the non and semiparametric models. Let Z; denote a vector of valid
instruments for X; such that:

where we assume the following conditions:
E(mi|Z;) = 0 and E(&;|Xi,m:) = E(€i|Zi,m) = E(eilni) = o(ms), (2.7)

and Z is an R%-valued vector, ¢, > ¢o with ¢o = q¢ — ¢1, m,(2) is a vector of unknown real
functions, m, = (m.(Z;)), {(Z});i=1,...,n}isiid. and m,; : R - Rforl=1,...,¢.
Also, let f(z) denote the density function of z with the random argument of Z;. Assume that
A, C R% is the union of a finite number of open convex sets such that f(z) > M, on A, for
some constant M, > 0. The conditional expectation of the disturbance term in the reduced
relation of (2.6), i.e. (2.7), is the distributional exclusion restriction; see the discussion on
page 658 of Blundell and Powell (2004), which leads to the following argument. Hereafter,
let us define the following:

my(vo,n) = E(Yi|Voi = vo,mi = 1) and  mg(vo,n) = E(Xy|Vo;i = vo, mi = 1), (2.8)

by which:
Y =my(Voi,mi) + Woi  and  X; = my(Voi, mi) + Ui, (2.9)



where E(Wy| X, 1) = 0 and E(Uy| X;,m;) = 0. We are now able to derive the conditional

expectation relation which controls endogeneity by using (2.6) to (2.9):

m(vo, 1) = my(vo,n) — ma(ve,n)' Bo = g(ve) + ¢(n), (2.10)

where «(n) # 0 is the endogeneity control function which controls the endogeneity in the
structural relation.

By imposing the above mentioned distributional exclusion restriction (2.7), we have
gained control over the endogeneity in the nonparametric regressors. As the results show,
it provides the consistent estimators of the index coefficients and also a way to identify the

unknown structural function. Given [y, reconsider (2.2) so that we have:

J(@) = EWi=UlB)

= E{g(Ver) — g(Vi)} + & — t(n:)])”
E{g(Voi) = g(V))}’ + E(ei)* = 2B [{g(Var) — g(Vi) } ]
Ag1i+ Agoi + Assy,

where e; = ¢, —u(n;), W; = Y;— E(Y;|Vi, ;) and U; = X; — E(X;|V;,nm;). Note that the estima-
tor of Ay 3, converges to 0 in probability, since E(e;|X;,n;) = 0. Hence, the feasible objective
function (2.17) defined in Step 2.2.3 of Procedure 2.2 below converges to the function which
provides the local minimum value with respect to the index coefficients in probability; see
Chapters 4 and 8 of Amemiya (1985) for details. Furthermore, we may now identify the un-
known structural function using the marginal integration technique, since (2.10) is a simple
nonparametric additive structure. The details for implementing technique are given in Step
2.2.5. of Procedure 2.2 below.

Given 8 and «, the minimising objective function is:
minJ(f, @) = min (W; - UlB)?. (2.11)

Furthermore, let:

ZXieAI,ZieAZ th,h,,(vi — U, — 77)5/;

, (2.12)
ZXiEAx,ZiE.Az thﬁn(‘/; — U, — 77)

E(ylv,n) =

and:
ZX»;E.AI,ZiE.AZ thyhn(‘/i — U, N — n)X’L

ZXieAx7Zi€Az Lhﬂuhﬂ(‘/; — U, N — 77)

E(zlv,n) = , (2.13)

9



where Ly, p, (-) is the product kernel function constructed from the product of the univariate
kernel functions of ky, (-) x -+ x khan(-) X kp,(-), and h, and h,, with j = 1,...,¢ are
the relevant bandwidth parameters and are nonparametric kernel estimators of E(y|v,n)

and F(z|v,n), respectively. Next, we turn to the corresponding leave-one-out estimators of

(2.12) and (2.13) by omitting (X;, Y, Vi, m):

Z];ﬁz Lhu,l“m(‘/j -0, 77] - 77)%

Ei(yh)ﬂ?) = (2-14)
Z];ﬁz th7h7] <V7 - U? 77] - n)
and: I v X
N . . ¢ — U7 ¢ — .
Ei(xlv,n) = g LrotoVo Z 075 =X (2.15)

> iz Lhyny (Vi —v,m5 — 1)
We redefine H,, in the previous section as H,, = {hy, by, h. : Cin™5 < hy, hy b, < Con™/5 )
We propose the following estimation procedure. Hereafter, let us collectively refer to these

estimation steps as “Procedure 2.2”.

Procedure 2.2
Step 2.2.0: Estimate the endogeneity control regressors from (2.6) as:

0 = X; — me(2;), (2.16)
_ Ygea Kn:(Zi—2)Xi

where m,(2) = S siea, Kn.(Zi—7)

from the product of the univariate kernel functions of k. (-) X --+ x ks _(-) and h,; with

, in which Kj,_(+) is the product kernel function constructed

j=1,...,q, is the relevant bandwidth parameter. By omitting the pair (X;, Z;), the corre-
i Ky (Zj—2)X;
> Kno(Zj—2)

Step 2.2.1: Given a and the non-parametrically generated endogeneity control regressors 7;,

sponding leave-one-out estimator is 1, ;(z) =

obtain the feasible objective function of (2.11) by the estimates of E;(y|v,7) and E;(z|v, 7)),
which are the corresponding estimates of those in (2.14) and (2.15) obtained by replacing 7;
with 7);.

Step 2.2.2: Define the feasible objective function of (2.11) as given below:

. 1 < /s . 2
J(ﬁ) = ﬁ Zl <W2i - éﬁ) )
where W, = Y;—E(Y;M, 7;) and Us; = X; —EAi(XZ-|Vi, 7;). We may compute the LS estimate

of the unknown parametric coefficients as:

~ —

50‘ = (SU) SU2W2'

10



Step 2.2.3: Given B from the previous step, compute &, h, and iLﬁ by minimising the
feasible objective function as follows:

: 5 : 1 . .
min  J(a, hy, hy) = min Z(ng — Uy, 8)*. (2.17)

a€An,hy,hy€Hn a€An,hy,hy€Htn

Step 2.2.4: Re-estimate (3, using &, h, and fzﬁ from the previous step as follows:

~ —

where Wy; = Y; — E;(Y)|V;, %) and Us; = X; — Ey(X;|V;, ;) with V; = X/é.

Step 2.2.5 below is mainly due to the involvement of the marginal integration technique in

an attempt to identify the unknown structural relation in question.

Step 2.2.5: Perform the marginal integration technique of Linton and Nielsen (1995) or
Tjgstheim and Austad (1996) to identify the unknown structural function. |

In the following paragraphs, we discuss an application of the marginal integration tech-
nique in Step 2.2.5 of Procedure 2.2 in greater detail. Let us first recall from (2.10) that
m(vo,n) = g(vo)+1(n), which is clearly a nonparametric additive specification. Hence a stan-
dard identification condition as discussed extensively in the literature (see Gao et al. (2006)
and Gao (2007), for example) assumes that E(g(vg)) = E(«(n)) = 0. The implementation
of the marginal integration technique identifies g(-) and ¢(-) up to some constant values as

follows:

m(vo) = / m(v0, 7)AQ(n) = 9(vo) + c1,
and:

m(n) = / (w0, 1)AQ(w0) = i) + ¢,

where ¢; = [ ¢«(n)dQ(n), c2 = [ g(v0)dQ(vo) and Q is a probability measure with [ dQ(n) =
[ dQ(vo) = 1. Here, the estimate of the structural relation can therefore be obtained by the

following sample version of the integration:
(o) = 23 (o, ) 219
m(v) = — m(v,n;), :
n - 3 1

and:

g(v) =m(v) — &, (2.19)



where m(v,7;) = E(ylv, ) — E(x|v, %) Bs, and ¢ = Ly m(V;). Note that (2.18) is
estimated by keeping V; at v, while taking an average over the remaining regressors, 7;. In
(2.19), in order to ensure that the identification condition of a nonparametric additive model
is satisfied, the constant value is estimated as ¢;.

An attractive feature of Procedure 2.2 is that the practicality of Xia et al. (1999), which
provides a way of selecting the same smooth parameter(s) for optimal estimation of both
ap and g(+) is still applicable, despite the regressors generated in order to control endogene-
ity in the model. The feasible objective function (2.17) can be expanded in the form of
J(, hy, hiy) = J() 4+ T (hy, hy) + Ry (e, hy, hy, h), where J(a) is an accurate approximation
to E(W; — U!By)?* and does not depend on the smoothing parameters, T'(h,, h,) is the usual
cross-validation criterion for choosing optimal bandwidths to estimate m(z'ag,n) for known
values of o and true values of 7, and R; is shown to be 0,(n~/2) in Theorem 2.1 below.
Hence, minimising J (e, hy, hyj) simultaneously with respect to a, h, and h; is very much like

separately minimising J(a) with respect to v and T'(h,, hy,) with respect to h, and h,,.

2.3. Asymptotic Properties

In this section, we present the main theoretical results of the current paper. First,
we present the necessary conditions and then the main theoretical results in Theorems 2.1
and 2.2. Within the results of Theorem 2.1, the asymptotic properties of both estimators
of parametric and index coefficients are presented in Corollary 2.1, particularly the fact
that they are /n-consistent. The asymptotic properties of the estimator of the unknown
structural function are presented in Theorem 2.2. The formal proofs of these results are
presented in the Appendix.

We impose the following regularity conditions. Assume that A = A, x A, C R*2 and
A, C R% are the unions of a finite number of open convex sets, respectively. Given ¢, €,
and ¢, let A%*, A;" and AS: denote the sets of all points in R% and R% that are no more
distant than ¢,, €, and ¢, respectively. Put U = {(UO =2'ap,n) :x € A5 and n € A‘;},
where ¢ is the smaller value of ¢, and ¢,, and U, = {2 : z € AF}. Let f(vo,n) denote the
joint density function of (2’cy,n) with random arguments of X; and ;. Assume that for

some ¢ and ¢,, we have the assumptions below.
Assumption 2.1. f(x,n) and f(z) are bounded away from 0 on U and U,, respectively.
Assumption 2.2. f(z) and m,(z) have bounded and continuous second derivatives on U, .

12



Assumption 2.3. m(v,n), my(v,n), my(v,n) and f(v,n) have bounded and continuous

second derivatives on U for all values of o € A,.

Assumption 2.4. A univariate kernel function k(-) and its first derivative kM (-) are sup-
ported on the interval (—1,1) and k(-) is a symmetric probability density with kM(-) being
bounded.

Assumption 2.5. Let E(e;|X; = x,m; =n) =0 and E(U|X; = z,m; =n) = 0. Assume that
E(e?|X; = x,m; =n) = o%(x,n) and E(u?|X; = z,n; = n) = ¥w?(x,n) hold almost surely and
both are continuous in (x,n). Let also supE|Y|' < oo and supE||X;||" < oo for some | > 2.
- (2 7

Assumption 2.1 is imposed to permit estimation of the functions in the regions of A°
and AZ* in order to avoid the random denominator problem. A similar set of conditions is
imposed in Hérdle et al. (1993) and Xia et al. (1999). Assumptions 2.2 and 2.3 are needed
to ensure that the symmetric kernel function in Assumption 2.4 leads to a second-order
bias in kernel smoothing. A higher-order bias can be achieved by imposing more restrictive
conditions on the smoothness of functions. For instance, Robinson (1988) reduces the bias
sufficiently by employing a higher-order kernel function with strong smoothness conditions
on the functions. The condition of the first derivative of the kernel function in Assumption
2.4 is required because we employ the Taylor argument to address the generated regressors,
7). A similar condition on the rth derivative of the kernel function can be found in Hansen
(2008). Assumption 2.5 is imposed so that the Chebyshev inequality can be applied as in
Hérdle et al. (1993) and Xia et al. (1999).

Let us define the following:

Butoon) = e {169 mmd? wn)+ Fon ()}
K
Bulon) = o2 {35y o) -+ o, )

where Ky = [ vgkn, (vo)dve, Kyo = [ 177 Kp,(n)dn with K, = ky, () x -+ x Ky, (), £
and f,sr) are rth derivatives of the joint density function of f(vg,n) with respect to vy and 7,
respectively, and m(()r)(vo) and my) (n) are the rth partial derivatives of the function m(vg,n)
with respect to vy and n;, respectively, where j = 1,...,¢2. Also, let £ = K, K, where
Ky = [ kn,(v0)?dvg and K, = [ ky, j(n)*dn. In these notations, the “integrated mean squared
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error (IMSE)” is

IMSE(hv,hn)x/{

where =< means that the quotient of the two sides tends to 1 and n — oco. Now let us define

2
= K 02 (’U(), 77)

By(vo,n)h2 4+ By(vo,n)h2 ;| + f(x,n)dzdn,
(vo,7) ; o (vo, M)A e o) (x,m)dwdn

the following:

n

Jay= 2 S {wi-up) and T(hhy) Z{mz Voo, ) — m(Vos, )},

i=1
where m,() is the leave-one-out kernel estimator of m(-). Hence, we have the result shown

in Theorem 2.1.
Theorem 2.1. Under Assumptions 2.1 to 2.5, we can write:
J(, o, hy) = J(@) + T(hy, hy) + Ri(e, hy, hy, hz) + Ra(e, hy, hy), (2.20)
T(hy, hy) = IMSE(hy, hy) + Rs(hy, hyy), (2.21)
where R3(hy, hy,) does not depend on o, and:

sup | Ry (e, hy, By, By)| = 0,(1), sup |Ra(av, by, hy)| = 0,(1),

Q€ Ay hop g hz €H, Q€A by, hy EHn,
and:

sup  |R3(hy, hy)| = 0,(1).
ha by €Hn

The above theorem is a direct extension of the work of Xia et al. (1999) to a more

complicated model associated with endogeneity. Now, let us define the following:
by, = X; — E(X;|Voi,n;) and mél) = dm(vg, n)/0vy.

As the results of Theorem 2.1 show, we have the asymptotic results for the estimators of ay

and Sy shown in Corollary 2.1 below.

Corollary 2.1. Under the assumptions of Theorem 2.1, we obtain the following:
V(B = Bo) —p (0,var),

where var, = o? [CI)EO — (m(()l)CI)U()) Dy, { (1)} (mél)CIDUL])_} and:
V(& — ag) —p (0,vary),

where vary = o2 [{(m(()l))zq)(]o}_ — { (l)q)Uo} Dy, {m(()l)(I)Uo}_} . u
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As for the estimator of the unknown structural function, i.e. g(-), we have the asymptotic

properties shown in Theorem 2.2.

Theorem 2.2. Under Assumptions 2.1 to 2.5, we show that:
nh, (§(0) — g(ve) — bias) —p N(0,var),

where bias = h2B,(vo,n) + > 2, hy By s(vo,n) and var = f(vo)K, [ Conl® ) go(n). W

T 2o

The proofs of Theorems 2.1 and 2.2 as well as Corollary 2.1 are given in the Appendix

below.

2.4. Simulation Studies

The purposes of the simulation exercises conducted in this section are twofold. Firstly,
the section aims to investigate whether experimental evidence can be found to support the
various points made in the theoretical discussion presented in the previous sections. Secondly,
we aim to provide finite sample evidence for the usefulness of the newly introduced method

for addressing endogeneity in the estimation of semiparametric SI models.

Remark 2.1. The work to be presented in this section has been completed in two stages. Ini-
tially, we conduct our simulation study based on the strategqy discussed in Section 2.4.1 below.
The results obtained are mostly the same as what we expected, i.e. Procedure 2.2 performs
superbly in the presence of nonparametric-endogeneity. On the other hand, Procedure 2.1,
which was developed without an effective mechanism to deal with endogeneity, does not seem
to be able to identify the unknown structural function for the models under investigation.
Although this evidence alone should be more than sufficient to dismiss the use of Procedure
2.1 wn the presence of endogeneity, it is surprising to see that, with a couple of exceptions,
such a procedure still performs quite well overall in the estimation of the index coefficients.
In order to provide further clarity, we conduct further investigations on the importance of
some particular characteristics of endogeneity on the estimation outcomes. This is the work

conducted in Section 2.4.2.

2.4.1. Initial Investigation
In this section, we consider two illustrative models, namely the GPLSI-type and the

EGPLSI-type, as defined in Examples 2.4.1 and 2.4.2 below. In practice, endogeneity is
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introduced to the models first and then Procedure 2.2 is applied. The finite sample perfor-

mance of Procedure 2.2 is subsequently compared to that of Procedure 2.1.

Example 2.4.1: GPLSI-type The baseline model without endogeneity is:

1
V2
such that:
1
1 —5(X2)
Q(V()z) = 5 V2 P) )

1+ [%(XQZ)}

where X; and X, are independently and uniformly distributed on [—1, 1] and ¢; ~ N(0, 1).
Clearly, (2.22) is a GPLSI type of model such that the perpendicularity of the parameter
vectors (see Xia et al. (1999), for instance) is not required. In this example, we introduce
endogeneity into the nonparametric regressor by letting Xy, = Z; + n;, where Z and n
are independently and uniformly distributed on [—0.5,0.5] and [—1,1], respectively, and
e =n;+e and e; ~ N(0,1). [ ]

Example 2.4.2: EGPLSI-type The base line model without endogeneity is:

such that:
g(%z) = €exXp {_2(08X12 - 06XQZ + 05X31)2} s

where for j = 1,2,3, X; is independently and uniformly distributed on [—1,1] and ¢ ~
N(0,1). Model (2.23) is an EGPLSI type of model such that the required perpendicularity
of the parameter vectors is satisfied, given that their dot product is zero. In this example,
we introduce endogeneity into the nonparametric regressor by letting Xs; = Z; + 1;, where
Z and n are independently and uniformly distributed on [—0.5,0.5] and [—1, 1], respectively,
and ¢; =n; + ¢; and ¢; ~ N(0,1). |

Throughout this section, optimisation is implemented using a limited memory Broyden—
Fletcher—Goldfarb—Shanno algorithm for the bound constrained optimisation of Byrd et al.
(1995). All simulation exercises are conducted in R with the Gaussian kernel function and
the number of replications ) = 200. To compare and evaluate the finite sample performances
of the estimation procedures introduced above, we compute the mean and mean absolute

errors of the estimates of both coefficients across () replications as tabulated in Tables 2.1
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to 2.4. We also compare the averaged absolute error (ae) of the estimates the unknown
structural function which is computed for Procedure 2.1 and for Procedure 2.2 using the

following:

a(Vi) = 9(Vas)| .

1 n
ag; = —
1=
=1
where n is the number of samples.

Table 2.1. GPLSI-type model with nonparametric endogeneity: Procedure 2.1.

n é é 612 |a—1/v2|  ae
50  1.1997 0.8980 0.0060 0.1980 0.0438

150 1.1994 0.8592  0.0031 0.1592 0.0443
300 1.1999 0.7306  0.0024 0.0402 0.0443
500 1.2001 0.6523  0.0016 0.0708 0.0446

Table 2.2. GPLSI-type model with nonparametric endogeneity: Procedure 2.2.

n B a 612 |a—1/v2| ae
50 1.2000 0.8272  0.0033 0.1436  0.0266

150 1.1999 0.7784  0.0015 0.0796 0.0176
300 1.2000 0.7527  0.0082 0.0578 0.0148
500 1.9999 0.7502  0.0006 0.0580 0.0118

Table 2.3. EGPLSI-type model with nonparametric endogeneity: Procedure 2.1.

n ﬁl ﬂ2 (3(1 (342 (313

50 0.2665 0.4236 0.9606 -0.7113 0.6586
150 0.2632 0.4383 0.8856 -0.6527 0.5910
300 0.2673 0.4340 0.8171 -0.6037 0.5422
500 0.2649 0.4355 0.7376 -0.5453 0.4880

n |B1—03] |B—04] |61—08| |az—(=0.6) |as—05 ae,

50 0.0679 0.0651 0.1691 0.1253 0.1586 0.0838
150 0.0461 0.0489 0.0859 0.0559 0.0910 0.0802
300 0.0364 0.0382 0.0229 0.0156 0.0426 0.0800
500 0.0361 0.0368 0.0629 0.0548 0.0181 0.0799
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Table 2.4. EGPLSI-type model with nonparametric endogeneity: Procedure 2.2.

n b1 B2 (¢35} (e)] ag

50  0.2253 0.4558 0.9649 -0.7366 0.6169
150 0.2877 0.4100 0.9226 -0.6951 0.5755
300 0.3118 0.3910 075821 -0.5670 04738
500 0.3089 0.3930 0.8068 -0.6065 0.5026

n o B1—03] |B2—04] |a—08| |dg—(=0.6)] |az—0.5] ae,

50 0.0785 0.0587 0.1678 0.1389 0.1195 0.0618
150 0.0247 0.0186 0.1244 0.0962 0.0769 0.0240
300 0.0184 0.0138 0.0446 0.0327 0.0285 0.0146
500 0.0182 0.0137 0.0416 0.0319 0.0263 0.0124

Let us now present some important findings based on the results in Tables 2.1 to 2.4.
Since endogeneity is introduced to the nonparametric regressor only, we expect the LS esti-
mators of the unknown parameters in the parametric component to be consistent in all cases.
Strong experimental evidence of such consistency can be clearly seen in all of the tables; see
the fourth column of Tables 2.1 and 2.2, and the eighth to tenth columns of Tables 2.3 and
2.4 in particular. With the exception of some unprecedented (but not unexpected) increases
in the absolute errors in the fourth column of Table 2.1 and the fifth column of Table 2.3,
similar findings to that in the previous point may also be seen for the index coefficients.
Despite the slightly better than expected performance, this is still strong evidence against
the use of Procedure 2.1 when endogeneity is a possibility. Strong evidence against the use
of Procedure 2.1 is clearly seen when the averaged absolute errors in the last columns of each
table are considered. Unlike Procedure 2.2, Procedure 2.1 is clearly not able to identify the
unknown structural function when endogeneity is presents.

In our view, such a conclusion should provide sufficient motivation for use of our newly
established procedure in practice. However, in the next section, let us conduct a further

investigation which provides more concrete evidence of the desirability of Procedure 2.2.

2.4.2. More Detailed Analysis
For the sake of clarity in illustrating the importance of some particular characteristics of

endogeneity, the model used in the analysis that follows will be structurally similar to that of
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Example 2.4.1. However, some modifications will be made to ensure that the experimental
design is suitable to the objectives of the exercise. In this section, we will conduct two types
of analysis, which are referred to hereafter as Type A and Type B, respectively.

Type A: The objective of the experimental analysis that follows is to study the impor-
tance of the conditional expectation of € given 7, i.e. denoted previously as ¢(-), for the
performance of Procedure 2.1, which was originally introduced in Xia et al. (1999), in the
presence of endogeneity. In such an experiment, the magnitude of endogeneity is clearly an
important parameter that must be carefully controlled. In this current analysis, in order to

best illustrate the impact of endogeneity, let us consider an extreme case, i.e. by defining:
Xoi = i, (2.24)

where 7; is independently and uniformly distributed on [—1, 1]. Defining Xs; as in (2.24) en-
ables specification of three related types of models, namely “exogeneity”, “linear-endogeneity”
and “nonlinear-endogeneity”. In the current sections, these models can be respectively ob-

tained by introducing the following:

(I(n) = 0xmn, (2.25)

12(n) = 0.5xmn, (2.26)
_ n

3(n) = —% ey (2.27)

For example, (2.25) suggests that the conditional expectation of € given 7 is zero and the
model is exogenous. An example of g(-), ¢t1(-), ¢2(+) and ¢3(-) with n = 500 is presented in

Figure 2.1. The simulation results in this section are presented in Tables 2.5 to 2.7.

Table 2.5. Nonparametric-exogeneity, i.e. t1.

n B Bias Var |3 -8 & Bias Var  |& — ¢ aey

100 1.1997 0.0002 0.0003 0.0143 0.9660 0.2660 0.0008 0.2660 0.0150
300 1.1996 0.0004 0.0001 0.0079 0.7989 0.0989 0.0012 0.0989 0.0108
500 1.2001 0.0001 0.0000 0.0055 0.7740 0.0740 0.0056 0.0740 0.0084
700 1.2005 0.0005 0.0000 0.0055 0.7330 0.0330 0.0045 0.0332 0.0073
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Table 2.6. Linear-endogeneity, i.e. (2.

n Corry, B Bias Var |5 -8 & Bias Var  |&— qf aeg

100 0.9852 1.1998 0.0001 0.0003 0.0145 0.9910 0.2910 0.0001 0.2910 0.2474
300 09852 1.1994 0.0005 0.0001 0.0079 0.8039 0.1039 0.0049 0.1039 0.2492
500  0.9853 1.2000 0.0000 0.0000 0.0057 0.8092 0.1093 0.0128 0.1092 0.2496
700  0.9853 1.2001 0.0005 0.0000 0.0056 0.7721 0.0721 0.0124 0.0898 0.2491
900  0.9853 1.1997 0.0002 0.0000 0.0043 0.8072 0.1072 0.0199 0.1341 0.2492
1,100 0.9853 1.2003 0.0003 0.0000 0.0040 0.7595 0.0595 0.0115 0.0932 0.2494
1,300 0.9853 1.1995 0.0004 0.0000 0.0035 0.7591 0.0591 0.0133 0.0982  0.2495

Table 2.7. Nonlinear-endogeneity, i.e. 13.

n Corryy 8 Bias Var |B - Bl o Bias Var |& — «f aeg

100 0.9514  1.1998 0.0001 0.0003 0.0146 0.9852 0.2852 0.0001 0.2852 0.3748
300 09505 1.1995 0.0004 0.0001 0.0079 0.8573 0.1573 0.0079 0.1573 0.3771
500 0.9513 1.2000 0.0000 0.0000 0.0057 0.8882 0.1882 0.0099 0.1883 0.3777
700 0.9514  1.2005 0.0005 0.0000 0.0056 0.8592 0.1592 0.0099 0.1602 0.3771

Below, let us discuss some important findings. Note firstly that E[e] = 0, which implies
that Ele|n] = Ele] = 0 when 1 and € are independent. Therefore, in this case, we are able
to measure the magnitude of endogeneity by simply considering the dependency between e
and 7. The second columns of Tables 2.6 and 2.7, present averages over () = 200 replications
of the empirical correlation coefficients, which is a measure the linear dependence between
e and 7. It is clear that even in such a controlled case, the functional forms of ¢(-) give rise
to different magnitudes of endogeneity, which are measured by Corry and Corryy. Since
endogeneity is introduced to the nonparametric regressor only, the LS estimators of the
unknown parameters in the parametric component seem to be consistent in all cases, as
expected. Compared to the simulation results in Table 2.5, those in Tables 2.6 and 2.7 show
clearly that Procedure 2.1 does not work well in the presence of endogeneity. Under linear-
endogeneity, the procedure seems to work quite well in estimating the index coefficient up to
about 700 observations. By extending the number of observations to 900, 1,100 and 1,300,
it becomes clear that |& — a| shows no sign of converging to zero. Furthermore, the evidence
suggests that the procedure is incapable of identifying the unknown structural function when
(either linear or nonlinear) endogeneity is present. Overall, nonlinear-endogeneity seems to

have somewhat more severe consequences when compared to its linear counterpart.
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Figure 2.1. g(-), ¢1(-), ¢2(:) and ¢3(-).
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Table 2.8. Corrx,, z,
n 100 300 500 700
Corrx,, z, 0.8278 0.8302 0.8326 0.8330

Type B: The objective of the analysis that follows is to investigate the finite-sample
performance of our newly introduced Procedure 2.2 in the presence of endogeneity. In
practice, whether Z; is a weak or a strong instrument may significantly affect the estimation

outcomes. In order to control for such an effect, let us define the following:
Xoi = Zi + iy (2.28)

where Z and n are independently and uniformly distributed on [0,3] and [—1, 1], respec-
tively. Furthermore, we consider two cases of ¢(+), namely linear-endogeneity and nonlinear-

endogeneity defined respectively as

t2(n) =1xn and 3(n) = 147‘7772. (2.29)

While Table 2.8 presents the averaged correlation coefficient of X5; and Z; at Q = 200
replications for n = 100, 300, 500 and 700, Tables 2.9 and 2.10 provide simulation results.
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Table 2.9. Linear-endogeneity, i.e. (2.

n Corrpg B Bias Var |3 -8 & Bias Var  |& — ¢ aey

100 0.9852 1.1972 0.0027 0.0008 0.0226 0.7803 0.0803 0.0076 0.0999 0.0827
300 0.9852 1.2009 0.0009 0.0001 0.0099 0.7372 0.0372 0.0009 0.0406 0.0511
500 0.9854 1.2003 0.0003 0.0001 0.0085 0.7137 0.0137 0.0005 0.0212 0.0439
700 0.9853 1.2008 0.0008 0.0000 0.0054 0.6948 0.0051 0.0002 0.0135 0.0385

Table 2.10. Nonlinear-endogeneity, i.e. t3.

n  Corryp B Bias Var |5 — 6] & Bias Var  |& — «f aeg

100 0.6744 7 1.2004 0.0004 0.0003 0.0156 0.7863 0.0863 0.0021 0.0869 0.0326
300 0.6743  1.2001 0.0002 0.0001 0.0086 0.7248 0.0248 0.0005 0.0296 0.0230
500  0.6767  1.1998 0.0002 0.0000 0.0069 0.7082 0.0082 0.0001 0.0118 0.0196
700 0.6768  1.2008 0.0008 0.0000 0.0052 0.7016 0.0016 0.0000 0.0053 0.0171

Below, let us discuss some important findings. Once again, the functional forms of ¢(-)
seem to be important factors which determines the nature of endogeneity. With an instru-
ment of a particular explanatory power in (2.28), linear-endogeneity tends to give a higher
Corry, than Corryp obtained from its nonlinear counterpart. An important observation
which can be brought forward is that even for cases in which we are able to identify a strong
instrument (with strong explanatory power), the impact of endogeneity is still determined by
the relationship between e and 7, i.e. the conditional expectation of the former with respect
to the latter. Furthermore, compared the results in Tables 2.9 and 2.10 to those presented in
Tables 2.6 and 2.7, it is clear that our newly developed Procedure 2.2 performs much better
than its Procedure 2.1 counterpart in the presence of endogeneity. Procedure 2.2 seems to
be capable of obtaining consistent estimators of all the unknowns, including the parametric

and index coefficients, and the unknown structural function.

3. Semi-parametric Analysis of Shape-Invariant Empirical Engel Curves

In this section, we will study the relationships between expenditure on specific goods
and the level of total expenditure by using our newly established method to conduct a
semiparametric analysis of shape-invariant Engel curves in the Australian context. The data

used is based on the Household, Income and Labor Dynamics in Australia (HILDA) Survey,
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which is Australia’s household-based panel study that began in 2001. The goal of such a
survey is to collect information about economic and subjective well-being, the labour market
and family dynamics. The survey consists of more than 7,500 households with just below
20,000 individuals. The current release, i.e. Release 8, covers the first eight waves (out of
11) of data, which has recently become publicly available. The current section consists of
four subsections. In Section 3.1, we explain the empirical model which our analysis will be
based on. Section 3.2 discusses the details of the relevance of endogeneity in the study at
hand. In Section 3.3, we then discuss the empirical estimation of the shape-invariant Engel

curves and we present a number of important findings in Section 3.4.

3.1. The Empirical Model

Hereafter, let {Y1, X1;, Xo;}7; represent an i.i.d. sequence of n household observations
on the budget share Yi;; of good [ = 1,..., L > 1 for each household ¢ facing the same relative
prices, the log of total expenditure Xy;, and a vector of household composition variables Xo;.
For each commodity [, budget shares and total outlay are related by the general stochastic
Engel curve Yi; = Gi(X1;) + €, where G, is an unknown function that can be estimated
using a standard nonparametric regression method under the exogeneity assumption of X,
i.e. F(ey|X1;) = 0. Furthermore, a number of previous studies have reported that household
expenditures typically display a large variation with demographic composition. When X,
is discrete, a simple approach for model estimation is to stratify by each distinct discrete
outcome of X5 and then estimate using nonparametric regression within each cell. At some
point, however, it may be useful to pool the Engel curves across household demographic
types and to allow X; to enter each Engel curve semiparametrically. This idea leads to the

following specification:
Vin = gi( X1 — d(Xg;00)) + X, B0 + €, (3.1)

where ¢;(-) is an unknown function and ¢(X5,a0) is a known function up to a finite set of
unknown parameters aq that can be interpreted as the log of general equivalence scales for
household .

The functional form specification in (3.1) deserves a few remarks. To this end, Blundell
et al. (2003) show that such the functional form specification is consistent with consumer
optimisation theory; see also the discussion of Lemma 3.2 of Blundell et al. (1998). Fur-

thermore, in the current paper, we choose ¢(X%,ap) = X)), where Xy; is a vector of the
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demographic variables that represent different household types and «g is the vector of the

corresponding equivalence scales. Hence we have the following EGPLSI specification:
Yia = gi( X1 — Xpa0) + X580 + e€ar- (3.2)

In our application, we consider six broad categories of goods, namely food, clothing,
alcohol, electricity and gas, transportation and other goods. In order to preserve a degree
of demographic homogeneity, we select a subset of married (or cohabiting) couples with one
or two dependent children aged less than 16 years, in five Australian territory capital cities,
namely Adelaide, Brisbane, Melbourne, Perth and Sydney. Therefore, our demographic
variable, X, is simply a binary dummy variable that reflects whether the couple has one
child (X3 = 0) or two children (X5 = 1). This leaves us with 817 observations, including 286

couples with one child.

Table 3.1. Descriptive statistics.

Couples 1 child Couples 2 children

Mean Std. Dev Mean Std. Dev

Budget shares:

Alcohol 0.03373 0.03608 0.02918 0.03409
Clothing 0.03060 0.02343 0.03212 0.02788
Electricity and gas 0.04077 0.16236 0.03850 0.14124
Food 0.31515 0.02600 0.31303 0.02872
Transportation 0.04076 0.00153 0.04385 0.00124
Other 0.56870 0.03060 0.57263 0.02308

Expenditure and income:
log (total expenditure) 4.53302  0.20566  4.58983 0.17854
log (income) 4.92124 0.23414 4.96652 0.23769

Sample size 286 531

The budget shares of these goods are presented in Table 3.1. The log of total expenditure
on the these goods is our measure of the continuous endogenous explanatory variable Xj.
Furthermore, Table 3.1 also presents descriptive statistics for the main variables used in this
study. The table shows larger expenditure shares for alcohol, electricity and gas, and food

for the couples with one child, but larger expenditure shares for clothing, transportation
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and other goods for the couples with two children. This indicates the differences in the
consumption patterns between the two demographic groups, and we expect the estimators

of the scale and shift coefficients to reflect these patterns.

Figure 3.1. Kernel joint density estimates with a full bandwidth matriz.
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3.2. A Simple Test of Endogeneity

Regarding the empirical study in the current section, in order to see the reason why
the log of total expenditure X; is likely to be endogenous, i.e. FE(g|x;) # 0, let us note
firstly that the system of budget shares can be thought of as the second stage in a two-stage
budgeting model (see Gorman (1959) for details), in which total expenditure and savings
are first determined conditional on total expenditure, and individual commodity shares are
chosen at the second stage; see Blundell (1988) for example. Hence X is a variable which
reflects savings and other consumption decisions made at the same time as the budget shares
Y] are chosen. In our analysis that follows, we consider an earning variable, which is the
amount that a household earned before tax in the chosen year, as an instrument.

Figures 3.1 and 3.2 present a plot of the kernel estimates for the joint density of log(total
expenditure) and log(earning) and a plot for E(log(expenditure)|log(earning)), respectively.
The two variables show strong positive correlation such that for the sample with one child,

the correlation is 0.4882 and is 0.4056 for those with two children. As seen in the figure,
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the joint density is also smooth and, together with the conditional mean, confirms our belief
that the gross earnings variable should be a good choice for our instrumental variable. Since
the kernel estimate of the density of log earnings is close to normal, we have taken the

instrumental variable Z = ®(log earnings) in the empirical applications and write:
ni = X1 — mxi1(Z). (3.3)

Our model, which consists of the index model in (3.2) and the specification of the endogeneity
control regressor in (3.3), is appropriate for the application since it is coherent with the

economic theory and it allows for the endogeneity of total expenditure as discussed earlier.

Figure 3.2. Kernel estimates of conditional expectation of log(expenditure) with respect to log(income).
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Figure 3.3 shows log(expenditure) (black line), mx; (red line) and 7 (blue line). In the
view of this triangular structure, the figure stresses that the endogenous variable, X;, may
be decomposed into the exogenous (i.e. Z) and the endogenous (i.e. 17) components. An
important observation to be noted is that even for cases in which we are able to identify
a strong instrument (with strong explanatory power), the impact of endogeneity is still
determined by the relationship between ¢, and 7, i.e. the conditional expectation of the

former with respect to the latter. We will explore this point further below.
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Figure 3.3. log(expenditure), mx1 and 7.
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In the following, we discuss the construction of variability bands in our analysis and how
they can be used as a preliminary test of exogeneity. For convenience, let us first restate the

triangular structure as:

Vi = g(Xu — Xb5a0) + X580 + €, (3.4)
X1 = mxi1(Z;) + i, (3.5)

where mx(z) = E(X1;|Z; = z), under the assumptions of the following:
Emi|Z; = 2) =0 and E(ey|Z; = z,m; = n) = E(eqln; =n) # 0. (3.6)
The structure described in (3.4) to (3.6) suggests that we have
EVial(X1 — Xya0), mi] — E[Xai| (X1 — X5,00), 1) Bor = qi( X1 — Xo;00) +ulni),  (3.7)

where Ele;|(X1; — X5,a) = (v — 2ha),n; = n) = Eleq| X = xa,m; = n) = Elealns = n) =
u(n) # 0. Expression (3.7) then implies

Yia = XoBo + g( X — X500) + u(n:) + e, (3.8)

where E(e|n) = 0. Let M;[(X1; — X5,00),m:) = 91( X1 — X5,00) + ¢(n;). In order to use (3.8),

it is important to note that:
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my(z) — ry00) = /Ml({xl — x50}, ) dn = gi(z1 — zhoy) + ¢

gz — o) = my(z; — xhag) — 1, (3.10)

where ¢; = [ «()dQ(n) and E(g(-)) = 0; the estimation of which can be done based on the
marginal integration technique in Step 2.2.5 of Procedure 2.2.

Now, observe that if we were to impose a linear specification on ¢(-), (3.8) would be
closely similar to the extended partially linear (EPL) model discussed in Blundell et al.
(1998). In this case, Blundell et al. (1998) showed that a test of the exogeneity null can be
constructed by testing Hy : ¢; = 0, where ¢; is an unknown parameter. To allow for more
flexibility on the functional form between the total expenditure and its instrument, as an
alternative, one may apply an existing test of a parametric mean-regression model against a
nonparametric alternative; see Horowitz and Spokoiny (2001), for example. However, in the
current paper, we suggest that it is more convenient to simply construct the variability bands

for ¢;(+) since its estimate is readily available. To do so, we use the following procedure.

Procedure 3.2

Step 3.2.1: Obtain an empirical estimate of g;(x; — zhap) in (3.10); see also Remark 3.1.
Step 3.2.2: Regress (3.9) using the estimates in Step 3.2.1 to obtain the nonparametric
estimates of ¢(+).

Step 3.2.3: Compute the bias-corrected confidence bands for the nonparametric regression
using the procedure introduced in Xia (1998). Finally, the above mentioned (Bonferroni-

type) variability bands are obtained using a similar procedure discussed in Eubank and

Speckman (1993).

Remark 3.1. To complete Step 3.2.1, Procedure 2.2 in Section 2.2 can be useful. However,
some modifications are required to take the index coefficient c into account, which can be
interpreted as a general equivalence scale for household i. Steps 2.2.1 and 2.2.2 are directly
applicable since they are implemented using a given a across | = 1,2,...,6 commodities.
In this case, the objective function (2.17) in Step 2.2.3 is only used for the particular
commodity. A mew objective function is the summation of these individual functions, i.e.

~

min J(a, by, hiyy), which is minimised with respect to a and 12 bandwidth param-
a€An,hy 1 hi 1 €HR ’ ’

eters, i.e. two for each commodity. Finally, Steps 2.2.4 and 2.2.5 are directly applicable

using & as well as hy,; and hy;. [ |
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3.3. Shape-Invariant Engel Curves

First, observe that (3.8) can also be re-stated as:
Yia = g( X1 — X500) + eq, (3.11)

where Y1, = Y — X580 — ti(n;). The use of (3.11) relies on the following corresponding

expression of (3.10):

mi(n) = / Mi(v,1) dv = () +
my (77)

u(n) = — ¢, (3.12)

where v = 21 — zha, ¢ = [ g(v)dQ(v) and E(y(-)) = 0. Hence (3.11) suggests that we are
able to employ Procedure 3.3 below in order to obtain the estimates of the shape-invariant

Engel curves and the related confidence bands.

Procedure 3.3

Step 3.3.1: Obtain empirical estimates of ¢;(n) in (3.12).

Step 3.3.2: Regress (3.11) using the estimates in Step 3.3.1 to obtain the nonparametric
estimates of g;(-).

Step 3.3.3: Compute the bias-corrected confidence bands about the nonparametric estima-

tor in Step 3.3.2 using the procedure introduced in Xia (1998).

3.4. Empirical Findings
Prior to presenting our empirical findings, let us recapitulate our empirical model of shape-

invariant Engel curves and made a final remark on the identification of the model. The

empirical model we are attempting to estimate is of the following form:

Yia = a(Xu — a0Xa;) + BuXe + €, (3.13)
Xu = mxi(Z) +ni.

However, the EGPLSI structure suggests that an unrestricted version of (3.13) is, in fact,
leil = gl(a01X1i — O[OXQZ‘) + 601,lX17j —f-BOngi + €il, while the restrictions Qp1 = 1 and 60171 =0
leads to Y1, = ¢;(X1; — a0 Xa;) + 8oy Xoi + €. To ensure the model’s estimability, the following

assumption, which is based closely on Assumption I of Ai and Chen (2003), is required.
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Assumption 3.1. Suppose that

E [(Ym - Mz(OémXu - CYoX2i) - ﬁoqui - 501X2i) ’X2i7 Zi]
= E[(Y1y — Mi(an X1 — aoXai) — BouXai) | X, Zi] = 0,

which tmplies
EY1a|Xoi, Zi] = E[(Mi(co X1 — a0 Xos) + BorXoi) | Xoi, Zi]
and, therefore,
E[Bo1,X1i| X2, Zi] = 0,

which is what is required by the perpendicularity of Xia et al. (1999). |

Hereafter, let us use §1,(-) and i1,(-) to denote the empirical estimates of g;(-) and ¢(-)
based on the marginal integration techniques, i.e. those obtained from Steps 3.2.1 and 3.3.1,
respectively. Furthermore, let us use go;(-) and i3,(-) to denote the empirical estimates of
gi(+) and ¢(+) which are obtained from Steps 3.2.2 and 3.3.2, respectively. Table 3.2 below
presents the empirical estimates of the unknown parameters ag and Sy (3.4). In addition,
to demonstrate the validity of our Procedures 3.2 and 3.3 above, in the table we also present

in the following average squared difference:
Tm e o o ona2 S
dg = — Zl {914(0) = 924(0)}" and dyy =~ Zl {ir(n) = i2a(M)}™,

where 0 = 21 — Qxs.

Table 3.2. Empirical results

& Categories of goods Bl dgi dy izv,l fzﬁ,l
0.5813  Alcohol -0.0053 3.9781e-07 3.2355e-06 0.581334 0.581333
Clothing 0.0005 7.8607e-07 6.4676e-06 0.581332 0.581330
Food -0.4541 3.4367e-04 1.7932e-04 0.065466 0.065465

Electricity and Gas  0.0133  6.9226e-06 2.8772¢-06 0.065465 0.065466
Transportation -0.0024 5.3794e-07 2.3716e-06 0.581335 0.581333
Other 0.1245 1.6083e-04 2.8754e-04 0.065466 0.065465
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We will now summarise a number of important findings based on the empirical results

in Table 3.2 and Figures 3.4 to 3.9.

Figure 3.4. Engel curves for alcohol
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Firstly, the average squared errors reported in the fourth and the fifth columns of Table
3.2 are virtually zero, which provides strong evidence in support of the procedures discussed
in Sections 3.2 and 3.3. Secondly, the signs and magnitudes of the estimates of the parameters
reported in the first and the third columns are consistent with what is reported in the existing
literature; see Blundell et al. (1998) for example. Furthermore, Figures 3.4 to 3.9, present the
Engel curves for the six budget shares in our HILDA sample, each of which consists of four
panels. The first and second panels present estimates of the Engel curves (for couples with
one child and couples with two children) based on the EGPLSI model with the endogeneity
being controlled using Procedure 2.2 and the endogeneity not being controlled by Procedure
2.1 in Section 2, respectively. Xia’s (1998) confidence bands are constructed for the Engel

curves of couples with one child. Furthermore, the fourth panels present estimates of the
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Engel curves computed using the partially linear model of Robinson (1988) for the sake of
comparison with the EGPLSI model. They show clear evidence that the partially linear
model restricts the empirical Engel curves to be within the same specification; see Blundell
et al. (1998) and Blundell et al. (2003) for example, where all empirical Engel curves are

similar to the quadratic functional form.

Figure 3.5. Engel curves for clothing
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Finally, the third panel of each graph presents the nonparametric estimates of ¢;(-) with
two sets of bands, namely the bias-corrected confidence bands for the nonparametric regres-
sion of Xia (1998) (black) and the Bonferroni-type variability bands discussed in Eubank
and Speckman (1993) (blue). Regarding alcohol, clothing and transportation, ¢(-) for these
cases do not seem to be statistically significant. These findings can be linked to the fact that
the shapes of the Engel curves presented in the top two panels are similar. In other words,
we show that the seriousness of the effect of the endogeneity problem, given an instrument,

depends very much on the relationship between the disturbances in the structural and the
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reduced relations, i.e. the relationship between e and 7, which, in this case, is summarised
by ¢(n). For a given instrument and therefore the corresponding 7, «(+) can be a function
such that the impact of endogeneity is minimal, e.g. in the case of alcohol, clothing and
transportation. Otherwise, they may be functions which make the effect of the endogeneity

severe, such as the case of electricity and gas.

Figure 3.6. Engel curves for electricity and gas
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Some of these Engel curves, e.g. those of alcohol, clothing and transportation, appear to
demonstrate that the Working-Leser linear logarithmic (Piglog) formulation is a reasonable
approximation. Nonetheless, for other shares, particularly electricity and gas, and food and
other goods, a more nonlinear relationship between the shares and the log expenditure is
evident. Regarding alcohol, clothing and transportation, although the Engel curves for our
two demographic groups both slope downward a broadly parallel shift in the Engel curves
does not seem to appear. In fact, the Engel curves of families with two children tend to

decline at a much faster rate as the log total expenditure increases.
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On the contrary, it is interesting to note how similar the shapes of the Engel curves are
for our two demographic groups for food and other goods. In these cases, there appears to
be a parallel shift in the Engel curves. A couple with one child spends around 15% more of
their budget on food than a couple with two children. However, couples with two children
end up spending 4% more of their budget on other goods than couples with one child at the
same level of expenditure. Such outcomes seem consistent with our intuitive belief about
consumption behaviour in practice, i.e. a couple with two children incurs additional costs

for having an extra child which are hidden within the other goods category.

Figure 3.7. Engel curves for transportation
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4. Conclusions

Although the GPLSI model by Carroll et al. (1997), and Xia and Hérdle (2006) has
great flexibility and advantages from both a PL model and a SI model perspective, it is

not appropriate for modelling the shape-invariant empirical Engel curve, since it does not
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allow the coefficient of the household equivalence scale to be included. Hence we consider
the EGPLSI model of Xia et al. (1999) and Gao (2007) in order to take the shape-invariant

specification into account.

Figure 3.8. Engel curves for food
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However, the estimation method and procedure of the existing EGPLSI model are not
applicable, since the endogeneity of total expenditure is well known in the literature. Hence,
we establish the CF approach in the EGPLSI model to address endogeneity instead of the
nonparametric IV estimation of Ai and Chen (2003); see Blundell et al. (2007) for its ap-
plication to an semiparametric analysis of empirical Engel curves. The attractive feature of
the proposed estimation procedure in the current study is that the practicality of Xia et al.
(1999) approach is still applicable, despite the endogeneity control variable generated. The
same bandwidth parameters are used for the estimation of coefficient of an equivalence scale
and a structural Engel function. In addition, we also consider the “biased-adjusted” confi-

dence band for the nonparametric structural function since the index coefficient is estimated
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and the endogeneity control regressor is generated. This corrected confidence band gives
us useful information such as whether the effect of endogeneity is significant by analysing

whether the band is significantly different from zero.

Figure 3.9. Engel curves for other goods
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We also provide Monte Carlo simulation studies and an application of the methodology
to the Australian HILDA dataset. The simulation studies illustrate the performance of CF
approach and the usefulness of the adjusted confidence band. The application illustrates that
the partially linear model restricts empirical Engel curves to be within the same specification
(see Blundell et al. (1998), and Blundell et al. (2003) for details), where all empirical Engel
curves are similar to the quadratic functional form. However, the EGPLSI model which, co-
herent with consumption theory, shows different functional forms for different commodities.
Also, the EGPLSI model shows that the effect of endogeneity on total expenditure is non-
trivial, the magnitude of the effects can be measured by the endogeneity control functions

and they are significantly different from zero.
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5. Appendix

In this section, we provide the necessary mathematical proofs of the main theoretical results of the
current paper. In Section 5.1, we show the proofs of Theorem 2.1 and Corollary 2.1 in two main steps. In

Section 5.2, we present the proofs of Theorem 2.2.

5.1. Proofs of Theorem 2.1 and Corollary 2.1

Step 1. Proofs of Theorem 2.1: Given «, 7 and B, the feasible objective function (2.17) is expanded

as follows:

SRS
M:

2
~ A A A~ A A A /A
J(o, hoyy hy) = Yi+Y¢*Y21'*{Xi*Xi+X¢*X21} 5}

1

IRT
1 {Yz Y;—(Syl—{Xi_Xi_éXﬂ'} 5]
h

3

i
3=
M:

*

I
—

o, by ) + Ru(a, hy, by, B, (5.A.1)

~ . R ~ ~ . R ~ . N > WiLa ~ Zj sUjLa i
where Ya; = 1, (Vi, i) + Wa; and Xo; = 1, (Vi, ;) + Uz with Wy = %7 Uai = %
and Ly;; = Lp,n,(Vi = Vj, 0 — 1), and dy,; = YQz Yi, 0x,; = Xoi — X; with Y; = 1y (Vi,m) + Wi,

X, = me(Vi,mi) + U; with W; = Zii’:vf”, T = f‘ U L” and L;ij = Ly, n, (Vi — Vj,m —n;). Let us note

that m = m(vo,n) and m = E(m|a). Note that the term in the last equation of (5.A.1), J*(a, by, hy), is

further expanded, as shown below:

n

. 1 . NV L
(@) = =3 {Yi ~ Y- {Xi- X} ﬂa] = J(@) + T(hys hy) + Ra(a ho, ),

=1

where:

Ro(a, by, hy) = (B — Bo) Siva—rn, (Bo — B) + (B — B0)"Sp (Bo — B) = 2(B — Bo)' Sy —rivs e —rins (Bo — B)

—2(8 - B0)' Sy .0 (Bo — B) +2(B = Bo) Sy —ina,v(Bo — B) — 2(B — B0)' Sy .0 (Bo — B)
—2(8 —B0)" Sy (Bo — B) + S + 2Sm s — 2866 + Se — 2(8 = Bo) S, 1 m—in
+2(8 50)/511 —2(8 = Bo) Sy sy v — 208 = B0) Sy —riny ir—sin — 2(B — Bo)' Svm—r
+2(8 ~B0)' Sty i — 208 — Bo) Sy —siny e +2(53 — Bo) Sgr, + 2(8 — Bo)'Sve + 2(8 — B0) Sy —ri, .0
+ 2(8 = Bo) S, s, e + 2(8 — Bo) Sve — 2(8 — Bo)Spe + 2Sm—m,e — 25m—m.e — 28m—sie — Sm—rno
with Y; = i, and X; = i, since E(wlz,n) = 0 and E(ulz,n) = 0, and 1o = % with
Loij = Ln, n, (Voi — Voj,mi — ;). The results of sup |Ra(cv, hy, hy)| = 0,(n1/2) are easily shown

a€Ay hy,hy€Hnp
using the fact that 8y — 3 = 0,(n~1/2) shown below, and Propositions 5.A.1, 5.A.2, 5.A.3, 5.A.6, 5.A.7,

5.A.9, 5.A.12, 5.A.13, and 5.A.14. The last term in Ry is Sy, = Op(n~"hythy®) + Op((hZ + h2)?) by
a simple non-parametric analysis. This is a simple extension of the results in Xia et al. (1999). Hence the

objective function (5.A.1) is rewritten as:

J(a, hy, hig) = J(@) + T(ho, hy) + Ri(a, ho, by, b)) + op(n=1/?),
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where:

Ry(at, bz, by h) = (B = B0)' S5, (B — Bo) + S5, + S5, +2(8— Bo)' S5, +2(8—Bo)S5.5. — 25 5.

- 2(8 - B0)' S5 m.—ins (B — Bo) —2(B - B0) S5 s, (B — Bo) —2(B - BO)/S$XU(B - Bo)

+2(8 = B0)' S5, (B = B) +2(B = B0) s s + 28 = B0)' S5 i +2(8 = Bo)' S5, — 2(B = Bo)' ;..
+2(8 = B0)' S5, . +2B=B0)S;. s g, +2(B = B0)'Ss, 1 = 26— 5o)' S5, 5 =255,
—285 =285+ 2S5 o4 28— Bo)Ss, ., + 208 = Bo)' S5, i i, 208 = B0)Ss.p

_2(3 _ BO)ISSEU — 25827m_m — 25367m_m - 25366 + 253@‘

In particular, we show that sup |Ri(at, hzy by, hyp)| = op(n’l/z) by using the fact that 8 =
Q€A by P hz €My

Bo 4 0p(n~'/?) and Propositions 5.A.4, 5.A.5, 5.A.8, 5.A.10, 5.A.11 and 5.A.15 below. Hence we have:
J(, hy,y hs) = J(@) 4 T(hy, hy) + 0p(n/?).

Step 2. Proofs of Corollary 2.1: We can now present the proofs of asymptotic properties of & and

2

. In view of the representation of ||a — ag|| < Cn~/2, we may write, for bounded values of z:

m(vo,n) = m(v,n) —z'(a — ao)mél) +0(n™Y), (5.A.2)

m(vo,nlv,n) = mv,n) —mg(zlv,n) (a — ao)m(()l) +0(n™Y), (5.A.3)

where m,(z|v,n) = E(X 4, |v,n). Firstly, let us consider the asymptotic properties of &. Using (5.A.2) and
(5.A.3), we have the expansion of .J(«) below:

2

J(a) = %Z [mi—mrl-U{(ﬁo—B)-l-ei}
i=1

1 & a2 N 2 N N
= - E i — My — E i — Mipe;+ — E i — i} U (Bo —

ni:l{m m; } +”i:1{m m;}e +ni:1{m m; } U (Bo — B)
+ terms independent of a 4 0,(n~'/?)

= (ap—a) [Tll zn: {mél)}Q U:U;

i=1

I~ g
_ 9= ; U’ _
(g — @) + - iil eimg  Ul(ag — )

n

+ 2(8 — B lrlz Zm(()l)UiUiI

(a0 — o) +0p(n~"?)

2 1 < 1
{mé )} UoiUp; | (a0 — @) + 25 Z eimé )Uéi(QO —a)

=1

I |~
M=

|

i=1

+ 2(B - B (00 — ) + 0p(1) + O, (n~/2), (5.A.4)

| —

L~ () o
,2 ( Uy UL
ni:1mo 0iYo;

Where U()i = {Xi — E(Xi|V0i,77i)}.
Given «y, (8o — /3’) = - (% > UOiU(’)Z-)_ %ZZ;I Uyie; (see the last equation of (5.A.8) below). Hence
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we have:

J@) = (a0~ a) [;Z{mé”fvmvai

=1

1 n
(g — @) + 2E Z eimél)U(’)i(ao —a)
i=1
(00— ) + 0p(1) + Oy(n™?)

1 g

= (ag—a) {m(gl)}Z Sv, (g — a) + Qm(()l)Ser (g — @) — 2 {(Syo)f Ser} {mél)SUO(ao — a)}
+ op(1).

1 n
— Z m(()l)UOZU(I)l
" i=1

Given 7 and «, we write the linear reduced form from Robinson (1988) as follows:

Y; — Vi = (Xi — X35)'Bo + (mi — 1hag) + (e — €3q), (5.A.5)
O A oA 7 % A oA 2 A Go1miLaig o G- eils,ij . 7
where Y3; = 1y (Vi, ;) + Wai, Xai = g (Vi, M) + Usi, mhai = %7 €3i = 21?:17%3[ with Ws; =

i1 Wils,ij _ X1 UjLs,g >

and Us; = with Ly ;; = Ly, n, (Vi — Vj, i — ;).

oo Laa Do Lsa
Hence from (5.A.5), we obtain:
3 -1
B =fo= SX—X's <SX7)A(3,mf7h3 + SX*)A(&efég) : (5.A.6)
We further decompose (5.A.5), as shown below:
~ ~ N N ~ N /
Yi—Yii+Y—Ys = {Xi — X1 + X _XSi} Bo +m; — ma; + 1y — g,
+ e —é1t+ e — €
Y; — Yy — 53“ = (Xi— Xy — 5m)’50 + (Mg — 1y — gmz) + (e — €15 — gez)
Y=Y +Y; - Y1 - Syl = (Xi— Xi+ X, — Xy — Sm)/ﬂo + (mi — My + My — My — sz)

+ (e — 15 — beyi).- (5.A.7)

The last term of the right-hand side in (5.A.7) is from FE(e|z,n) = 0, where Sy,i = Vs — Yii, 53” =

i i ¥ ~ ~ b3 ~ ~ iy ~ i 2 > ~ i kel ~ anl ﬁ‘LJ‘Lly,‘,J‘
X3i—X1i, Omyi = M3; =114, Ocyi = €33—€14, Y13 = My (Vi, )+ Wiy, X1 = mg(Vi, i) +Uns, iy = <S—F——

2oy Ly
. Yizieilig 1 i Wil A 2o UiLuag . S s
€1, = W, Wli = m and Uli = m with Ll,’ij = Lh'mhn (M—V],T]Z—T]]) By utlhblng

the decomposition in (5.A.7), we have:

Sx %, =Sx_% 5% %, +55, ¥25v_x x-x%, —25%_ x5 — 2% _x, 5%

= Smy—m, + sz*mm + Sy + Sf]l + SSX + 2Sm17mz’mz,mzl + Qsmlfﬁlz’U — 2sz*ﬁlx,01
28

My —Mz,0X

T Pmy—re,dx QSﬁzI—mzl,U - 2Smfmxl,fjl - 2SU(L - 2SU5X + 25015;(5

Sm—ing = Sm—m + Si—iy TS5, + 28m—m,m—rny — 25, 55 —25;

m—1m1,0m’

Se—ey = Se + Se, + S5 —2Sce, — 25,5 + 285

élge;
S Xym—rng = Omo—me,m—in T Smy—imgg—inn ~ Sy g 5 T Sy —ingy ;m—mn + Sy -, -y — S, 5

e =My Om
+ Sm—i,U + Sim—i,U = Syrs, — Sin—imtn — Om—ina,tn T 0018, ~ Om—m Sy — O by T O8xs,

SX*Xg,efé'j = szfrhz,e - sz*ﬁlmaél - Smm—mx,ge + Sﬁzz*mzpe - Sﬁlm*mzl’él - Smm_mx1766

+ Sve = Sver = Sys. — Sv,e + 50,6, T 50,5, — Ssge T 5 e T %5x5e

x€é1

Sm—fn,g,e—ég = Sm—rh,e - Sm—m,él - Sm,m’ge + Srh—fn,l,e - Srh—ml,él -5,
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Note that we approximate two kernel functions to be Ls;; = Lo ;; + Op(n_l/th_l) and Ly ;5 = L +
O, (n~'/2h; 1) uniformly in i. Hence, we employ Lo ;; and L;; instead of Ls;; and L ;;, respectively, for the
case ofﬁ in Propositions 5.A.1 to 5.A.15.

By Propositions 5.A.1 to 5.A.15, and (5.A.2) and (5.A.3), we obtain that (5.A.6) is

(B /BO ( ZUU) { ZUeszzU }+0( 1/2)
= (;iUU) { ZUZe’_*Z él)UiU{(ao—Oz)}+Op(n1/2)

=1 =1
1 & _
B (n ; UO%UOl) { Z Ugiei — — Zm Uoillgi (o0 — O‘)} +0p(1) + Op(n™/?). (5.A.8)

) _
Given By, ap —a = <71L Sy {mgl)} UOiU6i> LS~ 1mél)er6i (see the last equation in (5.A.4)).

n

Hence we have:

(B — 60) = <711 ; UOiU6i> i; Uoiei Zm UOzUOZ (Tll 2 { } UOZU()i) %Zmél)elU .

2
+ op(1) = (Su,) {Ser - m(()l)SUO ({mél)} SUO) mél)Ser} + 0p(1).
Given both B and &, the variance of e is:

62 = Sefés + Sm*ms + (B - ﬁO)IS(Xf)A(g))(B - BO) - 2(3 - ﬁO)IS(X,)"(g)/&,éB
- 2(3 - 60)/S(X,X3)’m,m3 + 2Sm7ﬁ13,efé3 (5A9)

= Se+o0p(1) LN o2,

by Propositions 5.A.1 to 5.A.15 below, the law of large numbers, and the i.i.d. assumption of e; . The
other nine terms are (5 — o)'Sin, i, (6 = 0); (8 = o) S, —i,v(B = Bo); (B = Bo)Su(B — Bo)i Sm—ri
Sy —1n m—in} Sm—r, U} Smy—rig,e; OUe and Sy, o equal to op(n*1/2).

By the central limit theorem and the law of large numbers, the asymptotic normalities of & and B are:
: - (1) () (1)
VRB—B) = valSu) {Suoe = mPsu, ({mf} su,) seuo} +o,(1)

o N (0,07 g, — (mfw,) " wu, {1} (mPens) ] )

Vit —ag) = Vi ({md"} S0 ) {0~ m S, (5)” Sin ) + 001

'({mél)}2 ¢U0>_ —{meu,} @, {m (1)%”}1) .

o~

—-p N <o, o2

|
Note that the stated orders of the remainder term Ri(c,hy, hy, h.) are available uniformly in o € A,

and hy, by, h. € H,, using the uniform bounds in Hérdle et al. (1993). Let @, (c, hy, by, hz) be a possible
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quantity for which we show that:

sup lon (e, by B, Rz )| = 0p (%), (5.A.10)
Q€A hy,hy,h€Hy

since we have:

sup E (@n (0 huy, by, b)) = 0(1), (5.A.11)
€Ay by, by h €My,

for all integers | > 1 and where b < a. For details of the equations (5.A.10) and (5.A.11), see Step (ii)
of the proof section 4 in Hérdle et al. (1993). For proofs of Propositions 5.A.1 to 5.A.15, we assume that

hyi1="+++=hygqg =hyand h,1 =--- = h, 4, = h. for expositional simplicity.
Proposition 5.A.1.

(i) VS, -, = Opn™ 20y hiy =) + O (nV/2(h2 + 2)2):;

(i1) \nSim—m = Op(n™Y2h; hy®2) + Oy (n'/2(h% + h2)?).

Proof: Let ¢(-) denote m(-) and my(-), and @(-) denote m(-) and my(-). We deduce from (5.A4.2) and
(5.A.3) that, uniformly in i, we have:

L YaiteXiao,milv,m) — o(Xjao,m;)} Lis

Yi — Qi = Zj;éz‘ Lij
_ Z#z‘{¢i_¢i+U§(a_a0>‘pE’1)}Lij +0(n™)
B Zj;éi Li; b
k)Y {6 - s+ Ujla— ao)el L ORI (CX))
- Fo.m) Fo.m) ’

where gp(()l) = 9¢p(vo,n)/0vg. Note that since (f(v,r]) —f(v,n)) is Op(nhvh?f)_l/2 + Op(hZ + h2) so

[1 _ fm—fwn)
f(vm)
By identical distribution, E(Sg_3) = E{(¢; — ¢:)?}. We can easily obtain those E(@; — ¢;) = O(h% +

h2) and Var(@; — ¢;) = O(nh,h®) ™", where:

can be dropped, hence we consider only the numerator terms in the rest of the section.

. . 1 _ . 1
Var(¢i — ¢i) =Var | —— Z(cpl — @)L | +Var | —— Z Uj(a — ao)cpgl)Lij
nhyhiy por nhyhy e

1 . . 1 1
+2Cov nhoha Z(% — @;)Lsj, TR Z Ui — 040)%05 )Lij )
VIt VI it
1 - . _
nh,h > (@i = @)Lij | = O(nhyhi)~,

J#i

Var

1 _
Var W Z UJ/(OZ - 050)90(()1) = O(nzhvhg]Q) 1’
g

1 5 N 1 _ 1,
Cov | —4 E (P — @5)Lijy ——a5 E Ujl-(a — ao)gaél)Lij =0(n 3/2}% lhn ),
nhy,hy i nhy,hy o

Hence E(Sp_p) = O(nh,h@2) ™1 + O((hZ + h2)?). [ ]
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Proposition 5.A.2.
\/FLS";LI_";La:ym_m = Op(nilﬂh;lh;%) + Op(nl/Q(hq% + h%)Q)-

Proof: Proposition 5.A.1 (i) and (ii), and the Cauchy inequality provide the proof. |

Proposition 5.A.3.
(i) VnSg = Op(n= 2y hy®);
(ii) /nSe = Op(n='2h 1 h, %),

Proof: Let o; denote U; and e;, and E(o;|L) = 0 almost surely, where L = (X,n), hence E(S;) = E(p?).

Then we have:

E(§1)2 = n2h2hf12 295 O(nh hqz)
Jj#i

Proposition 5.A.4.
(i) /iS5, = Op(n™"hz ™ 2hy 2y 2 FD12) 4 O, (202 (03 + 13));
(ii) /nS; = Op(nhs /2 hy ' Phy @ TD2) 4 0, (/212 (W2 + h2));
(iii) \/HSSE — Op(n*1thZ/thl/Qh;(qHQ)/Q) +Op(n1/2h§(h3 + h,%)).
Proof: Let § denote 0x, 6, and é.. Then we have:

i =004 — 014 = Zﬁézé La,ig _ Zﬁsﬁi 0;Lij
7 ’ 2jzi Lo > i Lij

The Taylor expansion of the kernel function, Lo ;;, 1s:

Nij N\
Lyij = Lij + L) ( A ) + L3 (7) (h]> ;
n n

where Lg) is the rth derivative of L;j with respect to n with r = 1 or 2, N;; = {mgy(Z;) —mg(Z;)} —

{my(Z;) — my(Z;)} and T is between the segment line of n; —n; and 7; —7;. Hence, the denominator of dz;
18:

1 1 1)
ho h22 ZLQ’” T nh hP ZL” q2+1 E:Lij Aij + Rij,
i it holar ™ 5

where R;; is the remainder term and the second term on the right-hand side is 0,(n"Y2), because of the
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following:

2
E nhy h‘]z+1 Z
Jj#i
:;E Z(L('l'))2A2' -‘r-# Z Z L(l L(l)A A
n2h2p2l@tl) C \"" £ n2h2h} (g2+1)
vltn J#i J#i k#i,j
2
1 %
e e 2 () 2 Ci) = 2 Cuusik)
z v Ve 1#5 1#1
2 m)?
B | 2 (E9) D Clir = X Ciney ¢ {2 Clmaiy = Y Clmaiy
nth:h2h vy ! X ’ “
z vln V) l#7 l#1 m#j,l m#i,l
2 WM
e > 2 Lyl 4 22 Casay = D Cary ¢4 2= Commsrr = D Clmair
J#i k#i,g l#7 1#1 m#k,l m#i,l

-0 (n_QhZ_qzh,Zlh;(qurQ)) +0 (n—lhézlh;lh;((m-i-Q)) +0 (h;l(h% + h?])2) \

+1y-1 7 () A
(nhy h<12 )~ Z]‘:;i 6JL7',J Aij

where Cy j,x) = {me(Z1) — ma(Z;)} Kj. Hence b = o) =T S Lo ton(n 1)

Now consider E(\/nS;), we have:

E(J/nS;) = %ZE((??) + %i S B4, (5.A.12)

Using a similar argument to the above, the two terms in the right-hand-side of (5.A.12) are:

2

2\ _ )
E ((2 ) 4h2qz h2 h2(qQ+1) Z 9 L Z C(l’j;K) N Z C(l’i?K)
J#i I#] I#i

2
1

2
o D07 (257) 4 22 Casimr = 2 Care

J#i I#j I#i

2
2 (7 (1)
+ n4h2qzh2h | 28 (L5) 12 Cusior = - Cavsrey ¢ 3 D Clomaaey = 3, Clomas

j#i 1#j 1#1 m##j,l m#i,l
) (n—Qh;thglh;(%-‘rQ)) +0 (n—lh‘zlhglh;(%-‘r?)) ,

and

E (8250 4h2qzh2h2(qz+1) Z Z

J#E k#i,j

1 1
x B | GL LG O Cluginy =D Cluierey ¢ § O Comrsrey = O Clmicrc)
14 I£i mk mi,l

= O (hi(n2 +h2)?%).
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Proposition 5.A.5.
i nS. « =0 n—th*Qz/thl/zh*(qz+2)/2 +0 n1/2h2 h2+h2 ;
Ox0m p n p z\""v n
(”) ﬁsﬁx& _ Op(n—lhz—qz/2h51/2h;(q2+2)/2) +Op(n1/2h§(h12, + h%));
(iii) \/ESSMSE _ Op(n—1h;qz/2h;1/2h;(q2+2)/2) + Op(n1/2h§(hf, + h%)).
Proof: Proposition 5.A.4 (i), (ii) and (iii), and the Cauchy inequality provide the proof.
Proposition 5.A.6.
i) RSy = O, (n= Y20y 2 h, 2%,
vt P 7
ii) nSp, = Op(n="2hy 2y %),
Ue p n
i) /1See = Op(n=12hy 2 hy 2%,
P 7
(iv) VnSue = Oy(n=Y2hy*/?hy/?).

Proof: Since E(0;|L) =0, we have:

=1
where:
1
252 272 -1
Elei i) = —a B o Y dILY | = O(nhuhi)
i J#

Proposition 5.A.7.

(i) S, v = Op(n=2hy 20y /%),
(i) \/nSm—my = Op(n=Y2hy 2y /2
(ii) /TS, s = Op(n=1/2hy /20y /%)
(v) /ASi—e = Op(n= 20y 20y /%),

Proof: Since E(9;|L) =0, we have:

E(VnSpe-¢)? = % ZE {o}(@i — :)?},

where

2
2/~ A \2\1 __ 2 * *
E {Qi (@i — ¢4) } = 42}12/12"2 Z (C(W,L)> + 7n2h2h2‘” E e Z Z C(i,j;L)O(i,l;L)
J#i i G U]
= O(n 'hy'hy®) + O((h2 + q2hl)?)

with CF, ;. 1y = {(,51- — ¢+ Uj(a - ao)gpél)} L;;.
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Proposition 5.A.8.
(i) \/ESUSX :Op(n_lhzqz/thl/Qh;(qQH)/Z)—&-O,,( “1/2p2py 1/2h (qz+2)/2)
(ii) \/HSeSE =0,(n ~1ps qz/2h—1/2h (g2+2) /2)—|—O (n 71/2h2h;1/2h;(%+2)/2);
(iii) \/ﬁSeSm :Op(n*1h;‘h/2hv_1/2h;(%+2)/2)+Op(n*1/2h§h;1/2h;(q2+2)/2);
(iv) ViS5, = Op(n= hz % 2hy Py @ FD/2) 4 O (=1 /2020y Py (D)),
(v) Sy, = Op(n™ hz %/ 2hy Py = F22) 4 0 (12020 Py (222,
(Vi) VSys, = Op(n Wz 2h 2 hy (B2 4 O (012020 VP Ry (T2

Proof: Since E(0;|L) =0, we have

B 5 _;i (2262).

where
2
. 1 2
202\ 2 2 (7 (1)
E(0;0}) = 4h2qzh2h2(q2+1)E o; Z‘Sj (Lz‘j ) ZC(LJ’;K) - ZC(M;K)
(P L] i 1£5 1£i
2 52 (LY C C
¢ e (#8 (1) 4 G = 3 s
n i 1] I£i

X Z C(mvj;K) - Z C(mvi;K)
m#j,l mi,l
= O (72t hy D) 4 O (7 hdhy Ry )
using similar arguments to those in Proposition 5.A.4.
Proposition 5.A.9.
(i) NSy s o = Op(nhoh®)™1 + Oy (' /2 (R + B2)?);
(ii) VSs_ i = Op(nhyh®) ™1 + 40, (n'/2(h2 + h})?);
(iit) /NSy, -, = Op(nhoh®) ™t + Op(n/2(h2 + h2)?);
(iv) VnSm—m.e = Op(nhyhi2)~" + Op(n/?(h2 + h2)?).

Proof:

E (\/55¢—¢,@)2 = %ZE{@?(@ - @)+ % Z Z 4E{£3i@j(95i — @) (5 — @)}
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where

E{67(pi — i)’} =

s | 21 ()

VEIRESD

4h4h4q2 Z Z Z QJLZJC z,l,L)C(z k,L)

J#T £ k#i,l
= O(n=*h,h,*®) + O(n—lhglh;q?(hi +h2)?),

B {0:6;(Bi = 0)(85 — ¢3)} = Whm, 220 > eesLaLisCininy Clmiry

l#i s#j k#i m#j
— O((h2 + h2)*).

Proposition 5.A.10.
(i) ViSps, = O, (n‘thqz/zhglh;(”H)) + 0, (n'/2h2(h% + h2));
(ii) ViS5, = Op (07 0z 20ty =) 40, (n1/202(h2 + 12)

(ZZZ) \/HSUSm :O 71h Qz/2h 1= (Q2+1)> +Op Uzhi(h%#’h%)),

(iv) \/ﬁsééx =0, ('I”L_lh;qz/2 1h (Q2+1)) —‘rOp 1/2h2 h2 —|—h2)),
(v) VS, = Oy (n'hz""h qu)) + 0, (n'/2h2(h2 + h2));
éo P ’
(vi) ViSgs, = Op (n™2hz /by hy ) 1 O, (/202 (2 + 12)) .
Proof
2 1 <& Coa 2 N < s
E (ﬂSés) == ZE (gfcf) + - Z Z E (9i5i9j5j) )
i=1 i=1 j=1,2i
where
2
N 1
282\ T (1) e — .
B (Qiéi) - n6h2qZh4h2(2qz+1)E > oilih (L“ ) > Cngirr = 2 Cmir
z hyhy i i k#j ki
2
. 272 (1)
eh2q2h4h2(2q2+1 B> Lo {L” } 2 Conre) =2 Claire
n J#i 1#i k#l k#i
2 212 5 %
e 2 D2 Ly (L“ ) 2 Cuetsr) = D Craisro
z hyhny i i k#l ki
o Z Clmiskc) — Z Clmii) -0 (n—2hz—qz h;2h;(2qz+2)) +0 (n_zhﬁhgzh%_%“)) ’
m#l,k m#i,k

and the cross product term, E (@i&»@jﬁj), is (nSh21= hﬁh%@qgﬂ))_l times:

S DD 0i0sLi LS L LYY § D Conasry = D Cniry ¢ 4 D Clmtsre) = 2 Clomisr

i s I 1 k£l ki m#t m#j
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Hence the cross product term is O (h%(h2 + h%)z).

Proposition 5.A.11.
(i) ‘/ﬁsﬁzz—m,éx =0, (nflhz_Qz/thlh;(qz‘f‘l)) +0, (n”%ﬁ(hﬁ + h%)z);
(1) VS, s i = Op (0702205 0 ) 1 O, (/202 (2 + 12)2);
(iii) Sy, . 5. = Op (0220 10y =) 10, (n1/2R2(h2 + 12)%);
(i0) ViS5, = Op (071022 0y D) 40, (/20202 + 12)2)
(0) 1Sy e = Op (nflhz—qz/zhfh;(qwl)) + 0, (n'/2h2(h2 + h2)?);

(vi) ViS5, = Op (002 20ty ) + 0, (1202 (2 + 12)?).

Proof:
2 1 n 2 n n R N
E (\/ﬁ%i@,s) = Y E ((@i ) + - Y>> E ( — $:)0i(; @j)fsj) :
i=1 i=1 j=1,#1
where:
E ((852 - 951')2502
2
1 2
- n6}29= h4h2,(2q2+1) B Z;; (C(l Js L)) ;51 ( il ) %é:l Clnir = %;C(k’i;K)
z v/ I j i
2
+ 67244 2(2q2+1)E Z(C(l)]) ) Zél ( il ) ZC(k}lK) ZCkZK
nPhz**hihy i 1] k#l ki
X Z C(m,l:K) — Z C(m,i;K) =0 (n_Qh;qthQh;(qu-‘rQ)) +0 (n—2h§h;2h;(2qz+2)> ,
m#lLk m##i,k

and the cross product term, E (@iéii)jgj) is (nSh24: h%h%<2@+1))71 times:

S S S Cly Chny O LY L) S Cuerey = Y Clrircy ¢4 D Comtercy = D, Clmjirc)

i ks#j 1£1 t#] k#l ki m#t m#j
Hence the cross product term is O (h3(h2 + h2)*).

Proposition 5.A.12.
VnSge = Op(nhyh@)~! 4+ Oy (n'/2(h2 + h2)?).

Proof:
E(VnSg,)" = %ZE{UE@?}JF% E{U A]{éiéj}y

i=1 i=1 j=1,%i



where:

A 1
252 _ 2 2 2 | _ —2,-2; -2
E{Uie }_ P U UL L33 Y L3 p = O(n~2h; %h;, %),
viin i 1#i
and:
PSP 1
E {Ui J/‘eiej} = WE UlUl/ Z ZLileleZZ Z ZLiijk = O((h?) + h%)4)
n n 14 1] ki kAt
]
Proposition 5.A.13.
(Z) \/HSTYLm—mm,ﬁlw—mm — Op (nilhv_l/2h;q2/2>;
(”) \/ﬁSmfﬁz,ﬁzfﬁ@ _ Op (n—lhgl/Qh;QZ/Q);
(ii1) S, = Op (00 2 /%)
(i0) VASmmn.-. = Op (0~ ha ' 2hy %)
Proof: By (5.A.2) and (5.A.8) we deduce that, uniformly in i, we have:
pi = @i = Ullao — )y (Xao,m) + O(n™). (5.4.13)

Hence we have:

SNie s 1 S
(i — @i)(Bi — ¢i) = Wb Zti {%‘ — ¢ +Uj(a - ao)@(()l)} Lij,
VT gt

where t; = Ul (ag — a)gpél).
For the rest of proofs, we use similar arguments to those in Proposition 5.A.7 because E(U;|L) = 0.

Hence we have:

1« .
E(ViSe-pi-p)" = - Y E (8 (i —¢)),
i=1
where:
2/~ 4 \2 1 2 2 9 2 2 *
E(t](¢i = ¢:)*) = —omB{) <C(i,j;L)) L0+ —am B D D CT s Ll L
CUCI CSURN =Ty ez

= O(n?hy"h, ) + 0 (n~'(hl + h2)?).

Proposition 5.A.14.
. _ —-1/2, — 2
(i) Sy, 0 = Op (71520572
i) \/0Sm. . e = O, (" hy /2Ry 92/?);
z x> 4 n
iii) /nS. - =0, (n " hy?h, 2/,
m—m,U p n
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(1) /nSm—m,e = Op ( —lps 1/2h qz/2>

Proof: By (5.A.13) and E(0;|L) = 0, we use similar arguments to those in Proposition 5.A.6 for the
rest of the proofs.

B(/ASy—s.0)? = zgtw
where:

R 1 o1, —
E (t707) = WE > 120317 | =0 (n2hy by ).

J#i
|
Proposition 5.A.15.
() ViSy o = Op (72042 2y (2072
(1) VS, g, = Op (n7202 /205205 (24272,
i) /nS. -« =0, (n2n%hy 1/2h (q2+2)/2
( ) f m—1m,0x p y
(iv) /nS,, _m 5 =0, (n_zh;qzmh 1/2h (q2+2)/2)}
(v) V1S, _m 5. =0y (n_Qh;qz/thl/Qh;(q2+2)/2);
(vi) VS, _ s =Op (n—%;‘h/Qh;1/2h;<qz+2>/2) .
Proof: By (5.A.13) and E(U;|L) = 0, the rest of proofs is similar to that of Proposition 5.A.8.
1 & .
2 _ 232
B(WnS, 5% = Y E(£32),
i=1
where
2
252) — 2 (1
E(tZ(S’) 6h2qzh2h2(qz+1 6 L ZC(UK) chzK)
37“ I#] I#i
2 M
+ 6h2qz h2h2(q2+1 (L ) Z O(l JiK) Z C(l i K)
n-nz v’ j;éz 1£j 1
% Z Clr.jik) — Z Ck,i; k) (n=*h;%h; lh;(‘h”)) + O(n*‘ihﬁzlh;lh;(qzw))_
k3, kil
|
5.2. Proof of Theorem 2.2
Given 3 and &, we have:
m(©7 ﬁl) - m(’Uo, 771) = {my**(ﬁ’ 771) - my**('ﬁa 771) + my**('ﬁ; 771) - my**('Uo, ’I]Z) + 5?;**71'}

o, m) — (0, m1) + 7 (0,1) — (o, ) + B} (B Bo), (5B.1)
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where Y** =Y; — X/ o, 51/ = 57/ - 5;60 and m(0,n) = E(m]|&). As the results of Section 5.1, the second
term in the right-hand side of (5.B.1) is 0,(n~'/2), uniformly in 4, by applying (5.A.10) and (5.A.11) as

sup loi| = 0p(n®) since sup E|pi/n®|?' = O(1). Hence (5.B.1) is:
Xim€A,Z;€A, Ximi€AZ; €A,

v

where 8- = 0,(n"'/2) by similar arguments to those in Proposition 5.A.4 and i, (0, 7;) — My (vo, ;) =

0, (n~'/2) by (5.A.2) and (5.A.3), uniformly in i. Hence (5.B.2) is:

m(@y 771) - m(UOa 77z‘) = my**(”»ni) - ﬁly**(ﬁ,m) + Op(l)
m(0, ;) — m(0,m;) + op(1), (5.B.3)

where:

_ o 2 Amlwesn) —m(®,mi)} L
i L
"mvv'_mvaiLi'
_ Z];ﬁl{ (vo, ;) (vo,mi)} L,ij —|—U{(@—o¢0)mé1) —|—O(n*1)
2 Lig
Zj;éi {m(vo,nj) — m(vo, i)} {LO,ij + O(”_l/thl)} —1/2
= + O,(n ).
>z Logij +o(1)

Hence (5.B.3) is:

(0,75) —m(vo,n;) = m(vo, ;) — m(vo,n;) + op(1). (5.B.4)

3>

Let us define 1m(vg, ;) = m(vo, ;) f(vo,m:). Then we can rewrite the term in the right-hand side of

(5.B.4) as follows:

1m(vo, n;) — m(vo, m:) f (vo, m:)

m(vo,ni) —m(vo,mi) = f(vo,m)
1(vo, n;) — m(vo, mi) f (vo, mi) £ (o, m) — f(vo,ms)
70,11 ll T o) (5:55)

First, we consider the bias term E(m(vg,n;) —m(vo, ;) = f~(vo,n;) (Em(vo, 7;) — m(vo, m)E(f(vo, nl))) ,

where

y 1 - Vo,i — vo i =M\ e
Biton) = B | 3 (S g (M)

j=1

1 - Vb,] — Vo 77] — i ok
= K Evoﬂ% nhyhgf ZK’U ( h, Kﬁ hn )/]
=1

1 - Vo,; — o nj — M
= E|l— SN 'K, (-2 2K, [~ Vo i, mi
nhvh%Q ]; ( h” ) ! ( hn m< 0’3’77.7)

= f(vo,m)m(vo, i) + Ky 2h3 {ff,l)(vo, Wi)mél)(vo) + f(vo, Ui)méz)(vo)}

q2
- 3 e S} + 00 +0 ().
s=1 s
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In the expression above, E, ,, is the expectation conditional on vy and 7;. Hence

E(1m(vo,mi) — m(vo,mi)) = {thv(vo, i)+ Y hd  By(vo, ni)} +o(1). (5.B.6)

s=1
The single sum of (5.B.6) converges to its population mean by the Chebyshev’s law of large numbers (see
Linton and Hérdle (1996)).

Now let us consider the variance term. Note that f(vo,n;) = f(vo,n) + Op(n'/?) and m(ve,n;) =
m(vo,n)+0,(n~1/2) by the law of large numbers since both functions satisfy the bounded moment conditions.

Hence we have:
V(] s N\ ——
n ;m(vo, n) = f(v,m) n £
f(/()0777)_2V (711 Z v()?nl ) + f UOa (710777)2‘/ (Tll f(”oﬂ%))

=1
n 1 n
E m UOa 771 E vOa ’
=1 =1

where V(-) and Cou(-) denote variance and covariance, respectively, and:

1% (izm(007ni)> = ( vo,rh{ Zm V0, 1) }) ( o {1 m(vo, i) })

2
R Vio—v = Ve
amenMEK&*%O)HMQ m§fﬁ<% ) m(Vo 3, ;)
v j:1 v v j::l v

o2 2 , 2 2 _
S0, o SR ) oo,

14 (:L Zf(%wﬁ) = W +0(n™h)
Cov( Zm (vo, mi), Zf (vo, Mi ) = {rlLZ m(vo, m;) % f(vo,ni)}
e ) Sy M YT

i=1

n

{m(vo,m) —m(vo, m)f(voﬂ?z‘)}>

SRS
:\

- f(’UOan)722m(rUOa Cov (

':MS

where V,,, ,, denotes the variance conditional on vy and 7;. Hence we have:
Vnhd(m(d) — m(vg) — bias) —p N(0,var).

The consistency of §(9) and its asymptotic normality are argued in the same way as above, since m(vg) =

g(vo) + c1. [ ]
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