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Abstract

An extended generalised partially linear single-index (EGPLSI) model provides flexibility of

a partially linear model and a single-index model. Furthermore, it also allows for the analysis of

the shape-invariant specification. Nonetheless, the model’s practicality in the empirical studies has

been hampered by lack of appropriate estimation procedure and method to deal with endogeneity.

In the current paper, we establish an alternative control function approach to address the endo-

geneity issue in the estimation of the EGPLSI model. We also show that all attractive features

of the EGPLSI model discussed in the literature are still available under the proposed estimation

procedure. Economic literature suggests that semiparametric technique is an important tool for

an empirical analysis of Engel curves, which often involves endogeneity of the total expenditure.

We show that our newly developed method is applicable and able to address the endogeneity issue

involved in semiparametric analysis of the empirical Engel curves.
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1. Introduction

Since its introduction in the study by Carroll et al. (1997), the Generalized Partially

Linear Single-Index (GPLSI) model has received constant attention and been studied by

many researchers; see Yatchew (2003) and Gao (2007), for example. Furthermore, Xia et al.

(1999) provide a useful extension to the model; in this paper, let us refer to it as the extended

GPLSI (EGPLSI) model. The EGPLSI model allows for the well-known advantages of a

Single-Index (SI) model and a Partially Linear (PL) model (see the discussion in Chapter 2

of Horowitz (2009) for details) and also enables the analysis of the so-called shape-invariant

specification as will be illustrated in Section 3. Unlike its GPLSI counterpart, the EGPLSI

model concedes instead a more extensible specification, which includes the shape-invariant

one as a special case.

Recently, considerable effort has been made in studies of the shape-invariant specifica-

tion in the literature. While some interesting theoretical studies can be found in Härdle

and Marron (1990), and Pinkse and Robinson (1995), the best known application is in the

empirical demand study literature such as Blundell et al. (1998), Blundell et al. (2003) and

Blundell et al. (2007). In the context of empirical demand studies, this specification enables

the analysis of both a scale coefficient and a shift coefficient of a household characteristic in

the modelling specification, which is coherent with the consumer theory; see Blundell et al.

(1998), Pendakur (1999), Blundell et al. (2003) and Blundell et al. (2007) for detail.

With regard to nonparametric estimation techniques employed, the study by Carroll

et al. (1997) propose the local constant kernel estimation method, while Xia and Härdle

(2006) consider the local polynomial estimation method of Fan and Gijbels (1996) to esti-

mate the GPLSI model. On the other hand, Xia et al. (1999) employ the local constant

kernel estimation method to estimate the EGPLSI model and to examine its identification

condition. However, these methods are not directly applicable to empirical studies in various

economic areas, since they do not take endogeneity into account. The so-called “endogeneity

problem” is a technical name given by econometricians to a problem that is well known in

developmental studies and empirical economics; see Nakamura and Nakamura (1998), and

Deaton and Muellbauer (1980) for some excellent surveys. For example, the endogeneity of

total expenditure is a well-known issue in the empirical demand study literature; see Blundell

et al. (1998) and Blundell et al. (2007) for detail. If present, it might cause an inconsistent

estimation of the model’s scale coefficient and lead to nonidentification of structural Engel
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curves. Recently, various methods of addressing endogeneity in non and semiparametric

models have been discussed in the literature. Among these, a couple of the most popu-

lar methods are the nonparametric instrumental variables (IV) estimation and the control

function (CF) approaches; see Blundell and Powell (2003) for an excellent review of these

methods.

In the current study, we intend to provide two main contributions to the econometric

literature. Firstly, we aim to introduce a method to address endogeneity in the estimation

of the above-mentioned EGPLSI model. In particular, we aim to do so by establishing

a CF approach based on (i) the Robinson (1988) and Speckman (1988) type of the two-

stage estimation procedure and (ii) the widely-used triangular structure of Newey et al.

(1999), Pinkse (2000), Blundell and Powell (2004), and Su and Ullah (2008). The two-

stage estimation procedure allows us to conveniently identify the source(s) of endogeneity

and hence systematically address it in a partially linear type of semiparametric model via

the partialling-out process. Furthermore, we present in detail below how imposition of the

triangular structure enables us to identify the unknown structural relationship (e.g. the

structural Engel curves) in a simple nonparametric additive structure which can be conve-

niently estimated using the marginal integration technique of Linton and Nielsen (1995),

and Tjøstheim and Austad (1996). In spite of the involvement of an endogeneity control

variable which is not observable in practice and hence is non-parametrically estimated for

the flexibility (as in Newey et al. (1999), and Su and Ullah (2008)), we derive the asymptotic

normality and the
√
n-consistency of parameter estimators of both the parametric coeffi-

cients and the index coefficients. More importantly, we show that the practicality of the

study in Xia et al. (1999), which allows the same smoothing parameter in the estimation of

the index coefficients and the unknown structural function, is still applicable to the EGPLSI

model with the endogeneity control variable generated.

Secondly, we also intend to provide a further contribution to the economic literature,

particularly on the cross sectional relationships between expenditure on specific goods and

the level of total expenditure. To achieve this objective, we employ our newly established

methods to conduct a semiparametric analysis of shape-invariant Engel curves in Australia.

It should be noted that within the context of the empirical demand study, Blundell et al.

(2007) address the endogeneity of the total expenditure by using the nonparametric IV

method through which some regularity conditions are imposed on the inversion matrix and
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a constraint is placed on the space of the reduced relation to make it compact. Blundell et al.

(2007) show the
√
n-consistency of the estimators of both the scale and the shift coefficients.

On the other hand, Blundell et al. (1998) address endogeneity by using the CF approach by a

parametrically generated endogeneity control variable. We will clearly explain the difference

between our method and that of Blundell et al. (1998) below. Furthermore, because of the

importance of this topic, even though an effective tool is lacking for testing endogeneity in

semiparametrics, an additional advantage of our method is that it enables a rather simple

procedure to be established for the purpose. This is brought about mainly by its ability to

identify and unentangle the effect of endogeneity in the model. This simple tool relies on

the variability bands being constructed over the estimates of the endogeneity measures (to

be defined below) as the means of testing their statistical significance.

The structure of the rest of the paper is as follows. Section 2 immediately below discusses

the first contribution in detail, i.e. introduction of an alternative method for addressing

endogeneity in the estimation of the EGPLSI model. Section 3 concentrates on the second

contribution, i.e. the empirical study of the cross sectional relationships between specific

goods and the level of total expenditure. We conclude the paper with a summary of our

results in Section 4. All mathematical proofs of the main theoretical results of the paper are

presented in the Appendix.

2. EGPLSI Model with/without Endogeneity

Let us begin the current section with a brief review of the EGPLSI model and its esti-

mation procedure as often discussed in the literature (see Xia et al. (1999) and Gao (2007),

for example). We introduce endogeneity into the model and then discuss our alternative CF

based estimation procedure in Section 2.2. We present the main theoretical results of this

paper, which focus on the asymptotic properties of estimators of the model in Section 2.3.

All mathematical proofs are discussed in the Appendix. Finally, the finite sample properties

of the estimators are investigated in Section 2.4.

2.1. EGPLSI Model without Endogeneity

Generally, without the presence of endogeneity, the EGPLSI model can be defined as:

Yi = X ′iβ0 + g(X ′iα0) + εi, (2.1)
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where (X, Y ) is a Rq × R-valued observable random vector, β0 and α0 are unknown vector

parameters, and g(·) is an unknown link function such that g : R → R. The exogeneity

assumption suggests that E(εi|Xi) = 0, which implies that E(εi|Vi0) = 0 for Vi0 = X ′iα0.

Throughout the rest of the paper, let us assume that the random sample {(X ′i, Yi); i =

1, . . . , n} is independently and identically distributed (i.i.d.). Furthermore, let f(x) and

f(v0) denote the density functions of x and v0, respectively, with the random argument of

Xi. We also assume that Ax ⊆ Rq is the union of a finite number of open convex sets such

that f(x) > Mx on Ax for some constant Mx > 0. Finally, note the identification condition of

the EGPLSI model investigated in Xia et al. (1999), the orthogonality of the two coefficients

so that β0 ⊥ α0 with ||α0|| = 1.

Given α and β, we smooth the nonparametric index component out from the structural

relation (2.1) to obtain the minimising objective function for both unknown coefficients as

shown below:

min
α,β

J∗(α, β) = min
α,β

E (W ∗
i − U∗′i β)

2
, (2.2)

where W ∗
i = Yi − E∗(Yi|Vi) and U∗i = Xi − E∗(Xi|Vi) with Vi = X ′iα. In order to estimate

those unknown parameters and functions involved in (2.1), we need to obtain a feasible

version of (2.2). Firstly, consider the nonparametric kernel estimators of E∗(Yi|Vi) and

E∗(Xi|Vi) of the form:

Ê∗(y|v) =

∑
Xi∈Ax kh(Vi − v)Yi∑
Xi∈Ax kh(Vi − v)

and Ê∗(x|v) =

∑
Xi∈Ax kh(Vi − v)Xi∑
Xi∈Ax kh(Vi − v)

, (2.3)

where kh(·) = k(·/h), k(·) is a kernel function satisfying Assumption 2.4 below and h is a

bandwidth parameter. Next, we turn to the corresponding estimators based on the usual

cross-validation criterion. Let the estimators in (2.3) be the leave-one-out estimators by

omitting (Xi, Yi, Vi):

Ê∗i (y|v) =

∑
j 6=i kh(Vj − v)Yj∑
j 6=i kh(Vj − v)

and Ê∗i (x|v) =

∑
j 6=i kh(Vj − v)Xj∑
j 6=i kh(Vj − v)

. (2.4)

Let An denote the set of all unit q-vectors. Given C > 0 and 0 < C1 < C2 <∞, An = {α ∈
An : ||α − α0|| ≤ Cn−1/2} and Hn =

{
h : C1n

−1/5 ≤ h ≤ C2n
−1/5}. These definitions are

motivated by the fact that, since we anticipate that α̂∗ is
√
n-consistent and we expect ĥ to

be close to h0 ∼ const n1/5, we should look for a minimum of the feasible objective function

of (2.2), i.e. Ĵ(α, h), defined in Step 2.1.3 of Procedure 2.1 below. The feasible objective

function involves α to be distant from α0 by the order of n−1/2 and h to be approximately
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equal to a constant multiple of n−1/5; see Härdle et al. (1993) and Xia et al. (1999), for

example. The estimation procedure of (2.1) can be summarised as follows. Hereafter, let us

collectively refer to these estimation steps as ”Procedure 2.1”.

Procedure 2.1

Step 2.1.1: Given α, obtain the feasible objective function of (2.2) by estimating E∗(y|v)

and E∗(x|v) by Ê∗i (y|v) and Ê∗i (x|v) in (2.4).

Step 2.1.2: Define the feasible objective function of (2.2) as:

Ĵ∗(β) =
1

n

n∑
i=1

(
Ŵ ∗
i − Û∗′i β

)2
, (2.5)

where Ŵ ∗
i = Yi − Ê∗i (Yi|Vi) and Û∗i = Xi − Ê∗i (Xi|Vi). Perform the least squares (LS)

estimation on (2.5) to obtain β̂∗ = (SÛ∗)
− SÛ∗Ŵ ∗ , where SAB = 1

n

∑n
i=1AiB

′
i, SA = SAA, and

(SÛ∗)
− is a generalised inverse of (SÛ∗).

Step 2.1.3: Given β̂∗ from the previous step, obtain α̂∗ and ĥ by minimising the feasible

objective function:

min
α∈An,h∈Hn

Ĵ∗(α, h) = min
α∈An,h∈Hn

1

n

n∑
i=1

(Ŵ ∗
i − Û∗′i β̂∗)2.

Step 2.1.4: Re-estimate β0 using α̂∗ and ĥ from Step 2.1.3 as in 2.1.2:

β̂∗α̂ =
(
SÛ∗α̂

)−
SÛ∗α̂Ŵ ∗α̂

,

where Ŵα̂∗,i = Yi − Ê∗i (Yi|V̂i) and Ûα̂∗,i = Xi − Ê∗i (Xi|V̂i) with V̂i = X ′iα̂, Ê∗i (Yi|V̂i) and

Ê∗i (Xi|V̂i) obtained by replacing α in (2.4) with α̂∗.

Step 2.1.5: Given α̂∗ and β̂∗α̂, estimate the unknown structural function g(·) by ĝ∗(v̂) =

Ê∗(y|v̂)− Ê∗(x|v̂)′β̂∗α̂. �

The benefits of Procedure 2.1 of Xia et al. (1999) relies on the Robinson (1988) and

Speckman (1988) type of the two-stage estimation procedure and the direct extension of the

study in Härdle et al. (1993) to the EGPLSI model. On the one hand, the former conveniently

allows for the identification of the source(s) of endogeneity and hence a systematic way of

addressing endogeneity in partially linear semiparametrics due to the partialling-out process

as discussed above. On the other hand, the latter provides an empirical and practical

way of estimating single-index semiparametrics. The study of Härdle et al. (1993) allows
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for the same bandwidth for the optimal estimation of α̂∗ and ĝ∗(·), and the simultaneous

estimation of index coefficients and a smoothing parameter. Procedure 2.1 accommodates

this practicality of Härdle et al. (1993) in the EGPLSI model. In the next section, we show

that these benefits of Xia et al. (1999) can be extended to the proposed estimation procedure

in the current paper to address endogeneity in the EGPLSI model.

2.2. EGPLSI Model with Endogeneity

Let us now introduce endogeneity into the EGPLSI model, (2.1). There are two poten-

tial sources of endogeneity, namely endogeneity in the parametric and the nonparametric

components. Hereafter, let us refer to these as parametric-endogeneity and nonparametric-

endogeneity, respectively. Clearly, these two types of endogeneity may also occur simul-

taneously. To simplify the argument, we assume that the parametric regressors belong to

a subset of X, i.e. X1 ⊆ Rq1 for q1 < q, such that the regressors are exogenous with

E(ε|x1) = 0. Nonparametric-endogeneity exists for the case where E(ε|x) 6= 0, which im-

plies that E(ε|v0) 6= 0. Unless the parametric regressors are endogenous, the LS estimation

results in the consistent estimation of the parametric coefficients even with nonparametric-

endogeneity in the model due to the partialling-out process in the two-stage estimation

procedure of Robinson (1988) and Speckman (1988). Note also that, if present, parametric-

endogeneity can be conveniently dealt with using the parametric IV estimation; see also

the discussion in Chapter 16 of Li and Racine (2007), for example. Nonetheless, Procedure

2.1 does not take the above mentioned nonparametric-endogeneity into account and may

therefore result in inconsistent estimators for the index coefficients and in nonidentification

of the unknown structural function. The formal result is due to similar reasoning to that in

the classical linear regression model; see also the discussion in Chapter 8 of Amemiya (1985)

for details. Given β0, reconsider the objective function of (2.2), particularly the following:

J(α) = E(W ∗
i − U∗′i β0)2

= E [{g(V0i)− g(Vi)}+ εi − E(εi|Vi)]2

= E {g(V0i)− g(Vi)}2 + E {εi − E(εi|Vi)}2 + 2E [{g(V0i)− g(Vi)} {εi − E(εi|Vi)}]

≡ A1,1,i + A1,2,i + A1,3,i.

The feasible objective function in Step 2.1.3 of Procedure 2.1 does not converge to the

function which provides consistent estimators of the index coefficients, since A1,3,i may not
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converge to 0 in probability, due to endogeneity, i.e. E(ε|x) 6= 0; see Amemiya (1974),

for example. When there is no endogeneity, the estimator of A1,3,i converges to 0 and the

estimator of A1,1,i converges to the unique function providing the minimum value of the

objective function with respect to the index coefficients in probability. Note that A1,2,i

is not relevant to the index coefficients. Here more importantly, the unknown structural

function is not identified. This is mainly because E(ε|x) 6= 0, the conditional expectation of

ε on any function of x is not 0. This leads to the conditional expectation relation E∗(y|v)−
E∗(x|v)′β0 = g(v)+E(ε|v), and E(ε|v) 6= 0. Hence it is the case that Ê∗(y|v̂)− Ê∗(x|v̂)′β̂∗ =

ĝ∗(v̂) + Ê(ε|v̂)
p9 g(v0), where

p9 denotes no convergence in probability.

In order to obtain consistent estimators of the index coefficients and to recover the

unknown structural function when nonparametric-endogeneity is present, we propose in the

current section an alternative estimation method which is based on the CF approach; see

the discussions in Newey et al. (1999), Blundell and Powell (2004), and Su and Ullah (2008)

for its application to the non and semiparametric models. Let Zi denote a vector of valid

instruments for Xi such that:

Xi = mx(Zi) + ηi, (2.6)

where we assume the following conditions:

E(ηi|Zi) = 0 and E(εi|Xi, ηi) = E(εi|Zi, ηi) = E(εi|ηi) = ι(ηi), (2.7)

and Z is an Rqz -valued vector, qz ≥ q2 with q2 ≡ q − q1, mx(z) is a vector of unknown real

functions, mx ≡ (mx,l(Zi))
′, {(Z ′i); i = 1, . . . , n} is i.i.d. and mx,l : Rqz → R for l = 1, . . . , q2.

Also, let f(z) denote the density function of z with the random argument of Zi. Assume that

Az ⊆ Rqz is the union of a finite number of open convex sets such that f(z) > Mz on Az for

some constant Mz > 0. The conditional expectation of the disturbance term in the reduced

relation of (2.6), i.e. (2.7), is the distributional exclusion restriction; see the discussion on

page 658 of Blundell and Powell (2004), which leads to the following argument. Hereafter,

let us define the following:

my(v0, η) = E(Yi|V0i = v0, ηi = η) and mx(v0, η) = E(Xi|V0i = v0, ηi = η), (2.8)

by which:

Yi = my(V0i, ηi) +W0i and Xi = mx(V0i, ηi) + U0i, (2.9)
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where E(W0i|Xi, ηi) = 0 and E(U0i|Xi, ηi) = 0. We are now able to derive the conditional

expectation relation which controls endogeneity by using (2.6) to (2.9):

m(v0, η) ≡ my(v0, η)−mx(v0, η)′β0 = g(v0) + ι(η), (2.10)

where ι(η) 6= 0 is the endogeneity control function which controls the endogeneity in the

structural relation.

By imposing the above mentioned distributional exclusion restriction (2.7), we have

gained control over the endogeneity in the nonparametric regressors. As the results show,

it provides the consistent estimators of the index coefficients and also a way to identify the

unknown structural function. Given β0, reconsider (2.2) so that we have:

J(α) = E (Wi − U ′iβ0)
2

= E [{g(V0i)− g(Vi)}+ εi − ι(ηi)]2

≡ E {g(V0i)− g(Vi)}2 + E(ei)
2 − 2E [{g(V0i)− g(Vi)} ei]

≡ A2,1,i + A2,2,i + A2,3,i,

where ei ≡ εi−ι(ηi), Wi = Yi−E(Yi|Vi, ηi) and Ui = Xi−E(Xi|Vi, ηi). Note that the estima-

tor of A2,3,i converges to 0 in probability, since E(ei|Xi, ηi) = 0. Hence, the feasible objective

function (2.17) defined in Step 2.2.3 of Procedure 2.2 below converges to the function which

provides the local minimum value with respect to the index coefficients in probability; see

Chapters 4 and 8 of Amemiya (1985) for details. Furthermore, we may now identify the un-

known structural function using the marginal integration technique, since (2.10) is a simple

nonparametric additive structure. The details for implementing technique are given in Step

2.2.5. of Procedure 2.2 below.

Given β and α, the minimising objective function is:

min
α,β

J(β, α) = min
α,β

E (Wi − U ′iβ)
2
. (2.11)

Furthermore, let:

Ê(y|v, η) =

∑
Xi∈Ax,Zi∈Az Lhv ,hη(Vi − v, ηi − η)Yi∑
Xi∈Ax,Zi∈Az Lhv ,hη(Vi − v, ηi − η)

, (2.12)

and:

Ê(x|v, η) =

∑
Xi∈Ax,Zi∈Az Lhv ,hη(Vi − v, ηi − η)Xi∑
Xi∈Ax,Zi∈Az Lhv ,hη(Vi − v, ηi − η)

, (2.13)
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where Lhv ,hη(·) is the product kernel function constructed from the product of the univariate

kernel functions of khη1 (·) × · · · × khηq2 (·) × khv(·), and hv and hηj with j = 1, . . . , q2 are

the relevant bandwidth parameters and are nonparametric kernel estimators of E(y|v, η)

and E(x|v, η), respectively. Next, we turn to the corresponding leave-one-out estimators of

(2.12) and (2.13) by omitting (Xi, Yi, Vi, ηi):

Êi(y|v, η) =

∑
j 6=i Lhv ,hη(Vj − v, ηj − η)Yj∑
j 6=i Lhv ,hη(Vj − v, ηj − η)

(2.14)

and:

Êi(x|v, η) =

∑
j 6=i Lhv ,hη(Vj − v, ηj − η)Xj∑
j 6=i Lhv ,hη(Vj − v, ηj − η)

. (2.15)

We redefineHn in the previous section asHn =
{
hv, hη, hz : C1n

−1/5 ≤ hv, hη, hz ≤ C2n
−1/5}.

We propose the following estimation procedure. Hereafter, let us collectively refer to these

estimation steps as “Procedure 2.2”.

Procedure 2.2

Step 2.2.0: Estimate the endogeneity control regressors from (2.6) as:

η̂i = Xi − m̂x(Zi), (2.16)

where m̂x(z) =
∑
Zi∈Az

Khz (Zi−z)Xi∑
Zi∈Az

Khz (Zi−z)
, in which Khz(·) is the product kernel function constructed

from the product of the univariate kernel functions of khz1 (·) × · · · × khzqz (·) and hzj with

j = 1, . . . , qz is the relevant bandwidth parameter. By omitting the pair (Xi, Zi), the corre-

sponding leave-one-out estimator is m̂x,i(z) =
∑
j 6=iKhz (Zj−z)Xj∑
j 6=iKhz (Zj−z)

.

Step 2.2.1: Given α and the non-parametrically generated endogeneity control regressors η̂i,

obtain the feasible objective function of (2.11) by the estimates of Êi(y|v, η̂) and Êi(x|v, η̂),

which are the corresponding estimates of those in (2.14) and (2.15) obtained by replacing ηi

with η̂i.

Step 2.2.2: Define the feasible objective function of (2.11) as given below:

Ĵ(β) =
1

n

n∑
i=1

(
Ŵ2i − Û ′2iβ

)2
,

where Ŵ2i = Yi−Êi(Yi|Vi, η̂i) and Û2i = Xi−Êi(Xi|Vi, η̂i). We may compute the LS estimate

of the unknown parametric coefficients as:

β̂α =
(
SÛ2

)−
SÛ2Ŵ2

.
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Step 2.2.3: Given β̂ from the previous step, compute α̂, ĥv and ĥη̂ by minimising the

feasible objective function as follows:

min
α∈An,hv ,hη̂∈Hn

Ĵ(α, hv, hη̂) = min
α∈An,hv ,hη̂∈Hn

1

n

n∑
i=1

(Ŵ2i − Û ′2iβ̂)2. (2.17)

Step 2.2.4: Re-estimate β0 using α̂, ĥv and ĥη̂ from the previous step as follows:

β̂ =
(
SÛ3

)−
SÛ3Ŵ3

,

where Ŵ3i = Yi − Êi(Yi|V̂i, η̂i) and Û3i = Xi − Êi(Xi|V̂i, η̂i) with V̂i = X ′iα̂.

Step 2.2.5 below is mainly due to the involvement of the marginal integration technique in

an attempt to identify the unknown structural relation in question.

Step 2.2.5: Perform the marginal integration technique of Linton and Nielsen (1995) or

Tjøstheim and Austad (1996) to identify the unknown structural function. �

In the following paragraphs, we discuss an application of the marginal integration tech-

nique in Step 2.2.5 of Procedure 2.2 in greater detail. Let us first recall from (2.10) that

m(v0, η) = g(v0)+ι(η), which is clearly a nonparametric additive specification. Hence a stan-

dard identification condition as discussed extensively in the literature (see Gao et al. (2006)

and Gao (2007), for example) assumes that E(g(v0)) = E(ι(η)) = 0. The implementation

of the marginal integration technique identifies g(·) and ι(·) up to some constant values as

follows:

m(v0) =

∫
m(v0, η)dQ(η) = g(v0) + c1,

and:

m(η) =

∫
m(v0, η)dQ(v0) = ι(η) + c2,

where c1 =
∫
ι(η)dQ(η), c2 =

∫
g(v0)dQ(v0) and Q is a probability measure with

∫
dQ(η) =∫

dQ(v0) = 1. Here, the estimate of the structural relation can therefore be obtained by the

following sample version of the integration:

m̂(v) =
1

n

n∑
i=1

m̂(v, η̂i), (2.18)

and:

ĝ(v) = m̂(v)− ĉ1, (2.19)
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where m̂(v, η̂i) = Ê(y|v, η̂i) − Ê(x|v, η̂i)′β̂α̂, and ĉ1 = 1
n

∑n
i=1 m̂(V̂i). Note that (2.18) is

estimated by keeping V̂i at v, while taking an average over the remaining regressors, η̂i. In

(2.19), in order to ensure that the identification condition of a nonparametric additive model

is satisfied, the constant value is estimated as ĉ1.

An attractive feature of Procedure 2.2 is that the practicality of Xia et al. (1999), which

provides a way of selecting the same smooth parameter(s) for optimal estimation of both

α0 and g(·) is still applicable, despite the regressors generated in order to control endogene-

ity in the model. The feasible objective function (2.17) can be expanded in the form of

Ĵ(α, hv, hη̂) = J̃(α) +T (hv, hη) +R1(α, hv, hη, hz), where J̃(α) is an accurate approximation

to E(Wi −U ′iβ0)2 and does not depend on the smoothing parameters, T (hv, hη) is the usual

cross-validation criterion for choosing optimal bandwidths to estimate m(x′α0, η) for known

values of α0 and true values of η, and R1 is shown to be op(n
−1/2) in Theorem 2.1 below.

Hence, minimising Ĵ(α, hv, hη̂) simultaneously with respect to α, hv and hη̂ is very much like

separately minimising J̃(α) with respect to α and T (hv, hη) with respect to hv and hη.

2.3. Asymptotic Properties

In this section, we present the main theoretical results of the current paper. First,

we present the necessary conditions and then the main theoretical results in Theorems 2.1

and 2.2. Within the results of Theorem 2.1, the asymptotic properties of both estimators

of parametric and index coefficients are presented in Corollary 2.1, particularly the fact

that they are
√
n-consistent. The asymptotic properties of the estimator of the unknown

structural function are presented in Theorem 2.2. The formal proofs of these results are

presented in the Appendix.

We impose the following regularity conditions. Assume that A = Ax × Aη ⊆ R2q2 and

Az ⊆ Rqz are the unions of a finite number of open convex sets, respectively. Given εx, εη

and εz, let Aεxx , Aεηη and Aεzz denote the sets of all points in Rq2 and Rqz that are no more

distant than εx, εη and εz, respectively. Put U =
{

(v0 = x′α0, η) : x ∈ Aεx and η ∈ Aεη
}

,

where ε is the smaller value of εx and εη, and Uz = {z : z ∈ Aεzz }. Let f(v0, η) denote the

joint density function of (x′α0, η) with random arguments of Xi and ηi. Assume that for

some ε and εz, we have the assumptions below.

Assumption 2.1. f(x, η) and f(z) are bounded away from 0 on U and Uz, respectively.

Assumption 2.2. f(z) and mx(z) have bounded and continuous second derivatives on Uz.
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Assumption 2.3. m(v, η), my(v, η), mx(v, η) and f(v, η) have bounded and continuous

second derivatives on U for all values of α ∈ An.

Assumption 2.4. A univariate kernel function k(·) and its first derivative k(1)(·) are sup-

ported on the interval (−1, 1) and k(·) is a symmetric probability density with k(1)(·) being

bounded.

Assumption 2.5. Let E(ei|Xi = x, ηi = η) = 0 and E(Ui|Xi = x, ηi = η) = 0. Assume that

E(e2i |Xi = x, ηi = η) = σ2(x, η) and E(u2i |Xi = x, ηi = η) = u2(x, η) hold almost surely and

both are continuous in (x, η). Let also sup
i
E|Yi|l <∞ and sup

i
E||Xi||l <∞ for some l > 2.

�

Assumption 2.1 is imposed to permit estimation of the functions in the regions of Aε

and Aεzz in order to avoid the random denominator problem. A similar set of conditions is

imposed in Härdle et al. (1993) and Xia et al. (1999). Assumptions 2.2 and 2.3 are needed

to ensure that the symmetric kernel function in Assumption 2.4 leads to a second-order

bias in kernel smoothing. A higher-order bias can be achieved by imposing more restrictive

conditions on the smoothness of functions. For instance, Robinson (1988) reduces the bias

sufficiently by employing a higher-order kernel function with strong smoothness conditions

on the functions. The condition of the first derivative of the kernel function in Assumption

2.4 is required because we employ the Taylor argument to address the generated regressors,

η̂. A similar condition on the rth derivative of the kernel function can be found in Hansen

(2008). Assumption 2.5 is imposed so that the Chebyshev inequality can be applied as in

Härdle et al. (1993) and Xia et al. (1999).

Let us define the following:

Bv(v0, η) =
Kv,2

f(v0, η)

{
f (1)
v (v0, η)m

(1)
0 (v0) + f(v0, η)m

(2)
0 (v0)

}
Bη,j(v0, η) =

Kη,2

f(v0, η)

{
f
(1)
η,j (v0, η)m

(1)
j (η) + f(v0, η)m

(2)
j (η)

}
,

where Kv,2 =
∫
v20khv(v0)dv0, Kη,2 =

∫
η2Khη(η)dη with Khη = khη1 (·) × · · · × khηq2 (·), f (r)

v

and f
(r)
η are rth derivatives of the joint density function of f(v0, η) with respect to v0 and η,

respectively, and m
(r)
0 (v0) and m

(r)
j (η) are the rth partial derivatives of the function m(v0, η)

with respect to v0 and ηj, respectively, where j = 1, . . . , q2. Also, let K = KvKq2η , where

Kv =
∫
khv(v0)

2dv0 and Kη =
∫
kη,j(η)2dη. In these notations, the “integrated mean squared
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error (IMSE)” is:

IMSE(hv, hη) �
∫ 

Bv(v0, η)h2v +

q2∑
j=1

Bη(v0, η)h2η,j

2

+
K

nhvhη,1 . . . hη,q2

σ2(v0, η)

f(v0, η)

 f(x, η)dxdη,

where � means that the quotient of the two sides tends to 1 and n→∞. Now let us define

the following:

J̃(α) =
1

n

n∑
i=1

{
Wi − U ′i β̂

}2

and T (hv, hη) =
1

n

n∑
i=1

{m̂i(V0i, ηi)−m(V0i, ηi)}2 ,

where m̂i()̇ is the leave-one-out kernel estimator of m(·). Hence, we have the result shown

in Theorem 2.1.

Theorem 2.1. Under Assumptions 2.1 to 2.5, we can write:

Ĵ(α, hv, hη̂) = J̃(α) + T (hv, hη) +R1(α, hv, hη, hz) +R2(α, hv, hη), (2.20)

T (hv, hη) = IMSE(hv, hη) +R3(hv, hη), (2.21)

where R3(hv, hη) does not depend on α, and:

sup
α∈An,hv ,hη ,hz∈Hn

|R1(α, hv, hη, hz)| = op(1), sup
α∈An,hv ,hη∈Hn

|R2(α, hv, hη)| = op(1),

and:

sup
hv ,hη∈Hn

|R3(hv, hη)| = op(1).

�

The above theorem is a direct extension of the work of Xia et al. (1999) to a more

complicated model associated with endogeneity. Now, let us define the following:

ΦU0 = Xi − E(Xi|V0i, ηi) and m
(1)
0 = ∂m(v0, η)/∂v0.

As the results of Theorem 2.1 show, we have the asymptotic results for the estimators of α0

and β0 shown in Corollary 2.1 below.

Corollary 2.1. Under the assumptions of Theorem 2.1, we obtain the following:

√
n(β̂ − β0)→D (0, var1),

where var1 = σ2

[
Φ−U0
−
(
m

(1)
0 ΦU0

)−
ΦU0

{
m

(1)
0

}2 (
m

(1)
0 ΦU0

)−]
and:

√
n(α̂− α0)→D (0, var2),

where var2 = σ2

[{
(m

(1)
0 )2ΦU0

}−
−
{
m

(1)
0 ΦU0

}−
ΦU0

{
m

(1)
0 ΦU0

}−]
. �
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As for the estimator of the unknown structural function, i.e. g(·), we have the asymptotic

properties shown in Theorem 2.2.

Theorem 2.2. Under Assumptions 2.1 to 2.5, we show that:√
nhv (ĝ(v̂)− g(v0)− bias)→D N(0, var),

where bias = h2vBv(v0, η) +
∑q2

s=1 h
2
η,sBη,s(v0, η) and var = f(v0)Kv

∫ σ2(v0,η)f2(η)
f2(v0,η)

dQ(η). �

The proofs of Theorems 2.1 and 2.2 as well as Corollary 2.1 are given in the Appendix

below.

2.4. Simulation Studies

The purposes of the simulation exercises conducted in this section are twofold. Firstly,

the section aims to investigate whether experimental evidence can be found to support the

various points made in the theoretical discussion presented in the previous sections. Secondly,

we aim to provide finite sample evidence for the usefulness of the newly introduced method

for addressing endogeneity in the estimation of semiparametric SI models.

Remark 2.1. The work to be presented in this section has been completed in two stages. Ini-

tially, we conduct our simulation study based on the strategy discussed in Section 2.4.1 below.

The results obtained are mostly the same as what we expected, i.e. Procedure 2.2 performs

superbly in the presence of nonparametric-endogeneity. On the other hand, Procedure 2.1,

which was developed without an effective mechanism to deal with endogeneity, does not seem

to be able to identify the unknown structural function for the models under investigation.

Although this evidence alone should be more than sufficient to dismiss the use of Procedure

2.1 in the presence of endogeneity, it is surprising to see that, with a couple of exceptions,

such a procedure still performs quite well overall in the estimation of the index coefficients.

In order to provide further clarity, we conduct further investigations on the importance of

some particular characteristics of endogeneity on the estimation outcomes. This is the work

conducted in Section 2.4.2.

2.4.1. Initial Investigation

In this section, we consider two illustrative models, namely the GPLSI-type and the

EGPLSI-type, as defined in Examples 2.4.1 and 2.4.2 below. In practice, endogeneity is
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introduced to the models first and then Procedure 2.2 is applied. The finite sample perfor-

mance of Procedure 2.2 is subsequently compared to that of Procedure 2.1.

Example 2.4.1: GPLSI-type The baseline model without endogeneity is:

Yi = 1.2X1i + g(V0i) + εi with V0i = α0X2i =
1√
2

(X2i), (2.22)

such that:

g(V0i) =
1

2


1√
2
(X2i)

1 +
[

1√
2
(X2i)

]2
 ,

where X1 and X2 are independently and uniformly distributed on [−1, 1] and εi ∼ N(0, 1).

Clearly, (2.22) is a GPLSI type of model such that the perpendicularity of the parameter

vectors (see Xia et al. (1999), for instance) is not required. In this example, we introduce

endogeneity into the nonparametric regressor by letting X2i = Zi + ηi, where Z and η

are independently and uniformly distributed on [−0.5, 0.5] and [−1, 1], respectively, and

εi = ηi + ei and ei ∼ N(0, 1). �

Example 2.4.2: EGPLSI-type The base line model without endogeneity is:

Yi = 0.3X1i + 0.4X2i + g(V0i) + 0.1εi with V0i = 0.8X1i − 0.6X2i + 0.5X3i, (2.23)

such that:

g(V0i) = exp
{
−2(0.8X1i − 0.6X2i + 0.5X3i)

2
}
,

where for j = 1, 2, 3, Xj is independently and uniformly distributed on [−1, 1] and εi ∼
N(0, 1). Model (2.23) is an EGPLSI type of model such that the required perpendicularity

of the parameter vectors is satisfied, given that their dot product is zero. In this example,

we introduce endogeneity into the nonparametric regressor by letting X3i = Zi + ηi, where

Z and η are independently and uniformly distributed on [−0.5, 0.5] and [−1, 1], respectively,

and εi = ηi + ei and ei ∼ N(0, 1). �

Throughout this section, optimisation is implemented using a limited memory Broyden–

Fletcher–Goldfarb–Shanno algorithm for the bound constrained optimisation of Byrd et al.

(1995). All simulation exercises are conducted in R with the Gaussian kernel function and

the number of replications Q = 200. To compare and evaluate the finite sample performances

of the estimation procedures introduced above, we compute the mean and mean absolute

errors of the estimates of both coefficients across Q replications as tabulated in Tables 2.1
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to 2.4. We also compare the averaged absolute error (ae) of the estimates the unknown

structural function which is computed for Procedure 2.1 and for Procedure 2.2 using the

following:

aeĝ =
1

n

n∑
i=1

∣∣∣ĝ(V̂i)− g(V0i)
∣∣∣ ,

where n is the number of samples.

Table 2.1. GPLSI-type model with nonparametric endogeneity: Procedure 2.1.

n β̂ α̂ |β̂ − 1.2| |α̂− 1/
√

2| aeĝ

50 1.1997 0.8980 0.0060 0.1980 0.0438

150 1.1994 0.8592 0.0031 0.1592 0.0443

300 1.1999 0.7306 0.0024 0.0402 0.0443

500 1.2001 0.6523 0.0016 0.0708 0.0446

Table 2.2. GPLSI-type model with nonparametric endogeneity: Procedure 2.2.

n β̂ α̂ |β̂ − 1.2| |α̂− 1/
√

2| aeĝ

50 1.2000 0.8272 0.0033 0.1436 0.0266

150 1.1999 0.7784 0.0015 0.0796 0.0176

300 1.2000 0.7527 0.0082 0.0578 0.0148

500 1.9999 0.7502 0.0006 0.0580 0.0118

Table 2.3. EGPLSI-type model with nonparametric endogeneity: Procedure 2.1.

n β̂1 β̂2 α̂1 α̂2 α̂3

50 0.2665 0.4236 0.9606 -0.7113 0.6586

150 0.2632 0.4383 0.8856 -0.6527 0.5910

300 0.2673 0.4340 0.8171 -0.6037 0.5422

500 0.2649 0.4355 0.7376 -0.5453 0.4880

n |β̂1 − 0.3| |β̂2 − 0.4| |α̂1 − 0.8| |α̂2 − (−0.6)| |α̂3 − 0.5| aeĝ

50 0.0679 0.0651 0.1691 0.1253 0.1586 0.0838

150 0.0461 0.0489 0.0859 0.0559 0.0910 0.0802

300 0.0364 0.0382 0.0229 0.0156 0.0426 0.0800

500 0.0361 0.0368 0.0629 0.0548 0.0181 0.0799
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Table 2.4. EGPLSI-type model with nonparametric endogeneity: Procedure 2.2.

n β̂1 β̂2 α̂1 α̂2 α̂3

50 0.2253 0.4558 0.9649 -0.7366 0.6169

150 0.2877 0.4100 0.9226 -0.6951 0.5755

300 0.3118 0.3910 075821 -0.5670 04738

500 0.3089 0.3930 0.8068 -0.6065 0.5026

n |β̂1 − 0.3| |β̂2 − 0.4| |α̂1 − 0.8| |α̂2 − (−0.6)| |α̂3 − 0.5| aeĝ

50 0.0785 0.0587 0.1678 0.1389 0.1195 0.0618

150 0.0247 0.0186 0.1244 0.0962 0.0769 0.0240

300 0.0184 0.0138 0.0446 0.0327 0.0285 0.0146

500 0.0182 0.0137 0.0416 0.0319 0.0263 0.0124

Let us now present some important findings based on the results in Tables 2.1 to 2.4.

Since endogeneity is introduced to the nonparametric regressor only, we expect the LS esti-

mators of the unknown parameters in the parametric component to be consistent in all cases.

Strong experimental evidence of such consistency can be clearly seen in all of the tables; see

the fourth column of Tables 2.1 and 2.2, and the eighth to tenth columns of Tables 2.3 and

2.4 in particular. With the exception of some unprecedented (but not unexpected) increases

in the absolute errors in the fourth column of Table 2.1 and the fifth column of Table 2.3,

similar findings to that in the previous point may also be seen for the index coefficients.

Despite the slightly better than expected performance, this is still strong evidence against

the use of Procedure 2.1 when endogeneity is a possibility. Strong evidence against the use

of Procedure 2.1 is clearly seen when the averaged absolute errors in the last columns of each

table are considered. Unlike Procedure 2.2, Procedure 2.1 is clearly not able to identify the

unknown structural function when endogeneity is presents.

In our view, such a conclusion should provide sufficient motivation for use of our newly

established procedure in practice. However, in the next section, let us conduct a further

investigation which provides more concrete evidence of the desirability of Procedure 2.2.

2.4.2. More Detailed Analysis

For the sake of clarity in illustrating the importance of some particular characteristics of

endogeneity, the model used in the analysis that follows will be structurally similar to that of
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Example 2.4.1. However, some modifications will be made to ensure that the experimental

design is suitable to the objectives of the exercise. In this section, we will conduct two types

of analysis, which are referred to hereafter as Type A and Type B, respectively.

Type A: The objective of the experimental analysis that follows is to study the impor-

tance of the conditional expectation of ε given η, i.e. denoted previously as ι(·), for the

performance of Procedure 2.1, which was originally introduced in Xia et al. (1999), in the

presence of endogeneity. In such an experiment, the magnitude of endogeneity is clearly an

important parameter that must be carefully controlled. In this current analysis, in order to

best illustrate the impact of endogeneity, let us consider an extreme case, i.e. by defining:

X2i = ηi, (2.24)

where ηi is independently and uniformly distributed on [−1, 1]. Defining X2i as in (2.24) en-

ables specification of three related types of models, namely “exogeneity”, “linear-endogeneity”

and “nonlinear-endogeneity”. In the current sections, these models can be respectively ob-

tained by introducing the following:

ι1(η) = 0× η, (2.25)

ι2(η) = 0.5× η, (2.26)

ι3(η) =
η

1
2

(4 + η2)
. (2.27)

For example, (2.25) suggests that the conditional expectation of ε given η is zero and the

model is exogenous. An example of g(·), ι1(·), ι2(·) and ι3(·) with n = 500 is presented in

Figure 2.1. The simulation results in this section are presented in Tables 2.5 to 2.7.

Table 2.5. Nonparametric-exogeneity, i.e. ι1.

n β̂ Bias Var |β̂ − β| α̂ Bias Var |α̂− α| aeĝ

100 1.1997 0.0002 0.0003 0.0143 0.9660 0.2660 0.0008 0.2660 0.0150

300 1.1996 0.0004 0.0001 0.0079 0.7989 0.0989 0.0012 0.0989 0.0108

500 1.2001 0.0001 0.0000 0.0055 0.7740 0.0740 0.0056 0.0740 0.0084

700 1.2005 0.0005 0.0000 0.0055 0.7330 0.0330 0.0045 0.0332 0.0073

19



Table 2.6. Linear-endogeneity, i.e. ι2.

n CorrL β̂ Bias Var |β̂ − β| α̂ Bias Var |α̂− α| aeĝ

100 0.9852 1.1998 0.0001 0.0003 0.0145 0.9910 0.2910 0.0001 0.2910 0.2474

300 0.9852 1.1994 0.0005 0.0001 0.0079 0.8039 0.1039 0.0049 0.1039 0.2492

500 0.9853 1.2000 0.0000 0.0000 0.0057 0.8092 0.1093 0.0128 0.1092 0.2496

700 0.9853 1.2001 0.0005 0.0000 0.0056 0.7721 0.0721 0.0124 0.0898 0.2491

900 0.9853 1.1997 0.0002 0.0000 0.0043 0.8072 0.1072 0.0199 0.1341 0.2492

1,100 0.9853 1.2003 0.0003 0.0000 0.0040 0.7595 0.0595 0.0115 0.0932 0.2494

1,300 0.9853 1.1995 0.0004 0.0000 0.0035 0.7591 0.0591 0.0133 0.0982 0.2495

Table 2.7. Nonlinear-endogeneity, i.e. ι3.

n CorrNL β̂ Bias Var |β̂ − β| α̂ Bias Var |α̂− α| aeĝ

100 0.9514 1.1998 0.0001 0.0003 0.0146 0.9852 0.2852 0.0001 0.2852 0.3748

300 0.9505 1.1995 0.0004 0.0001 0.0079 0.8573 0.1573 0.0079 0.1573 0.3771

500 0.9513 1.2000 0.0000 0.0000 0.0057 0.8882 0.1882 0.0099 0.1883 0.3777

700 0.9514 1.2005 0.0005 0.0000 0.0056 0.8592 0.1592 0.0099 0.1602 0.3771

Below, let us discuss some important findings. Note firstly that E[ε] = 0, which implies

that E[ε|η] = E[ε] = 0 when η and ε are independent. Therefore, in this case, we are able

to measure the magnitude of endogeneity by simply considering the dependency between ε

and η. The second columns of Tables 2.6 and 2.7, present averages over Q = 200 replications

of the empirical correlation coefficients, which is a measure the linear dependence between

ε and η. It is clear that even in such a controlled case, the functional forms of ι(·) give rise

to different magnitudes of endogeneity, which are measured by CorrL and CorrNL. Since

endogeneity is introduced to the nonparametric regressor only, the LS estimators of the

unknown parameters in the parametric component seem to be consistent in all cases, as

expected. Compared to the simulation results in Table 2.5, those in Tables 2.6 and 2.7 show

clearly that Procedure 2.1 does not work well in the presence of endogeneity. Under linear-

endogeneity, the procedure seems to work quite well in estimating the index coefficient up to

about 700 observations. By extending the number of observations to 900, 1,100 and 1,300,

it becomes clear that |α̂−α| shows no sign of converging to zero. Furthermore, the evidence

suggests that the procedure is incapable of identifying the unknown structural function when

(either linear or nonlinear) endogeneity is present. Overall, nonlinear-endogeneity seems to

have somewhat more severe consequences when compared to its linear counterpart.
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Figure 2.1. g(·), ι1(·), ι2(·) and ι3(·).

Table 2.8. CorrX2i,Zi

n 100 300 500 700

CorrX2i,Zi 0.8278 0.8302 0.8326 0.8330

Type B: The objective of the analysis that follows is to investigate the finite-sample

performance of our newly introduced Procedure 2.2 in the presence of endogeneity. In

practice, whether Zi is a weak or a strong instrument may significantly affect the estimation

outcomes. In order to control for such an effect, let us define the following:

X2i = Zi + ηi, (2.28)

where Z and η are independently and uniformly distributed on [0, 3] and [−1, 1], respec-

tively. Furthermore, we consider two cases of ι(·), namely linear-endogeneity and nonlinear-

endogeneity defined respectively as

ι2(η) = 1× η and ι3(η) =
η

1 + η2
. (2.29)

While Table 2.8 presents the averaged correlation coefficient of X2i and Zi at Q = 200

replications for n = 100, 300, 500 and 700, Tables 2.9 and 2.10 provide simulation results.
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Table 2.9. Linear-endogeneity, i.e. ι2.

n CorrL β̂ Bias Var |β̂ − β| α̂ Bias Var |α̂− α| aeĝ

100 0.9852 1.1972 0.0027 0.0008 0.0226 0.7803 0.0803 0.0076 0.0999 0.0827

300 0.9852 1.2009 0.0009 0.0001 0.0099 0.7372 0.0372 0.0009 0.0406 0.0511

500 0.9854 1.2003 0.0003 0.0001 0.0085 0.7137 0.0137 0.0005 0.0212 0.0439

700 0.9853 1.2008 0.0008 0.0000 0.0054 0.6948 0.0051 0.0002 0.0135 0.0385

Table 2.10. Nonlinear-endogeneity, i.e. ι3.

n CorrNL β̂ Bias Var |β̂ − β| α̂ Bias Var |α̂− α| aeĝ

100 0.6744 7 1.2004 0.0004 0.0003 0.0156 0.7863 0.0863 0.0021 0.0869 0.0326

300 0.6743 1.2001 0.0002 0.0001 0.0086 0.7248 0.0248 0.0005 0.0296 0.0230

500 0.6767 1.1998 0.0002 0.0000 0.0069 0.7082 0.0082 0.0001 0.0118 0.0196

700 0.6768 1.2008 0.0008 0.0000 0.0052 0.7016 0.0016 0.0000 0.0053 0.0171

Below, let us discuss some important findings. Once again, the functional forms of ι(·)
seem to be important factors which determines the nature of endogeneity. With an instru-

ment of a particular explanatory power in (2.28), linear-endogeneity tends to give a higher

CorrL than CorrNL obtained from its nonlinear counterpart. An important observation

which can be brought forward is that even for cases in which we are able to identify a strong

instrument (with strong explanatory power), the impact of endogeneity is still determined by

the relationship between ε and η, i.e. the conditional expectation of the former with respect

to the latter. Furthermore, compared the results in Tables 2.9 and 2.10 to those presented in

Tables 2.6 and 2.7, it is clear that our newly developed Procedure 2.2 performs much better

than its Procedure 2.1 counterpart in the presence of endogeneity. Procedure 2.2 seems to

be capable of obtaining consistent estimators of all the unknowns, including the parametric

and index coefficients, and the unknown structural function.

3. Semi-parametric Analysis of Shape-Invariant Empirical Engel Curves

In this section, we will study the relationships between expenditure on specific goods

and the level of total expenditure by using our newly established method to conduct a

semiparametric analysis of shape-invariant Engel curves in the Australian context. The data

used is based on the Household, Income and Labor Dynamics in Australia (HILDA) Survey,
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which is Australia’s household-based panel study that began in 2001. The goal of such a

survey is to collect information about economic and subjective well-being, the labour market

and family dynamics. The survey consists of more than 7,500 households with just below

20,000 individuals. The current release, i.e. Release 8, covers the first eight waves (out of

11) of data, which has recently become publicly available. The current section consists of

four subsections. In Section 3.1, we explain the empirical model which our analysis will be

based on. Section 3.2 discusses the details of the relevance of endogeneity in the study at

hand. In Section 3.3, we then discuss the empirical estimation of the shape-invariant Engel

curves and we present a number of important findings in Section 3.4.

3.1. The Empirical Model

Hereafter, let {Y1il, X1i, X2i}ni=1 represent an i.i.d. sequence of n household observations

on the budget share Y1il of good l = 1, . . . , L ≥ 1 for each household i facing the same relative

prices, the log of total expenditure X1i, and a vector of household composition variables X2i.

For each commodity l, budget shares and total outlay are related by the general stochastic

Engel curve Y1il = Gl(X1i) + εil, where Gl is an unknown function that can be estimated

using a standard nonparametric regression method under the exogeneity assumption of X1,

i.e. E(εil|X1i) = 0. Furthermore, a number of previous studies have reported that household

expenditures typically display a large variation with demographic composition. When X2

is discrete, a simple approach for model estimation is to stratify by each distinct discrete

outcome of X2 and then estimate using nonparametric regression within each cell. At some

point, however, it may be useful to pool the Engel curves across household demographic

types and to allow X1 to enter each Engel curve semiparametrically. This idea leads to the

following specification:

Y1il = gl(X1i − φ(X ′2iα0)) +X ′2iβ0l + εil, (3.1)

where gl(·) is an unknown function and φ(X ′2iα0) is a known function up to a finite set of

unknown parameters α0 that can be interpreted as the log of general equivalence scales for

household i.

The functional form specification in (3.1) deserves a few remarks. To this end, Blundell

et al. (2003) show that such the functional form specification is consistent with consumer

optimisation theory; see also the discussion of Lemma 3.2 of Blundell et al. (1998). Fur-

thermore, in the current paper, we choose φ(X ′2iα0) = X ′2iα0, where X2i is a vector of the
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demographic variables that represent different household types and α0 is the vector of the

corresponding equivalence scales. Hence we have the following EGPLSI specification:

Y1il = gl(X1i −X ′2iα0) +X ′2iβ0l + εil. (3.2)

In our application, we consider six broad categories of goods, namely food, clothing,

alcohol, electricity and gas, transportation and other goods. In order to preserve a degree

of demographic homogeneity, we select a subset of married (or cohabiting) couples with one

or two dependent children aged less than 16 years, in five Australian territory capital cities,

namely Adelaide, Brisbane, Melbourne, Perth and Sydney. Therefore, our demographic

variable, X2, is simply a binary dummy variable that reflects whether the couple has one

child (X2 = 0) or two children (X2 = 1). This leaves us with 817 observations, including 286

couples with one child.

Table 3.1. Descriptive statistics.

Couples 1 child Couples 2 children

Mean Std. Dev Mean Std. Dev

Budget shares:

Alcohol 0.03373 0.03608 0.02918 0.03409

Clothing 0.03060 0.02343 0.03212 0.02788

Electricity and gas 0.04077 0.16236 0.03850 0.14124

Food 0.31515 0.02600 0.31303 0.02872

Transportation 0.04076 0.00153 0.04385 0.00124

Other 0.56870 0.03060 0.57263 0.02308

Expenditure and income:

log (total expenditure) 4.53302 0.20566 4.58983 0.17854

log (income) 4.92124 0.23414 4.96652 0.23769

Sample size 286 531

The budget shares of these goods are presented in Table 3.1. The log of total expenditure

on the these goods is our measure of the continuous endogenous explanatory variable X1.

Furthermore, Table 3.1 also presents descriptive statistics for the main variables used in this

study. The table shows larger expenditure shares for alcohol, electricity and gas, and food

for the couples with one child, but larger expenditure shares for clothing, transportation
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and other goods for the couples with two children. This indicates the differences in the

consumption patterns between the two demographic groups, and we expect the estimators

of the scale and shift coefficients to reflect these patterns.

Figure 3.1. Kernel joint density estimates with a full bandwidth matrix.

3.2. A Simple Test of Endogeneity

Regarding the empirical study in the current section, in order to see the reason why

the log of total expenditure X1 is likely to be endogenous, i.e. E(εl|x1) 6= 0, let us note

firstly that the system of budget shares can be thought of as the second stage in a two-stage

budgeting model (see Gorman (1959) for details), in which total expenditure and savings

are first determined conditional on total expenditure, and individual commodity shares are

chosen at the second stage; see Blundell (1988) for example. Hence X1 is a variable which

reflects savings and other consumption decisions made at the same time as the budget shares

Y1 are chosen. In our analysis that follows, we consider an earning variable, which is the

amount that a household earned before tax in the chosen year, as an instrument.

Figures 3.1 and 3.2 present a plot of the kernel estimates for the joint density of log(total

expenditure) and log(earning) and a plot for E(log(expenditure)| log(earning)), respectively.

The two variables show strong positive correlation such that for the sample with one child,

the correlation is 0.4882 and is 0.4056 for those with two children. As seen in the figure,
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the joint density is also smooth and, together with the conditional mean, confirms our belief

that the gross earnings variable should be a good choice for our instrumental variable. Since

the kernel estimate of the density of log earnings is close to normal, we have taken the

instrumental variable Z = Φ(log earnings) in the empirical applications and write:

ηi = X1i −mX1(Zi). (3.3)

Our model, which consists of the index model in (3.2) and the specification of the endogeneity

control regressor in (3.3), is appropriate for the application since it is coherent with the

economic theory and it allows for the endogeneity of total expenditure as discussed earlier.

Figure 3.2. Kernel estimates of conditional expectation of log(expenditure) with respect to log(income).

Figure 3.3 shows log(expenditure) (black line), mX1 (red line) and η (blue line). In the

view of this triangular structure, the figure stresses that the endogenous variable, X1, may

be decomposed into the exogenous (i.e. Z) and the endogenous (i.e. η) components. An

important observation to be noted is that even for cases in which we are able to identify

a strong instrument (with strong explanatory power), the impact of endogeneity is still

determined by the relationship between εl and η, i.e. the conditional expectation of the

former with respect to the latter. We will explore this point further below.
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Figure 3.3. log(expenditure), mX1 and η.

In the following, we discuss the construction of variability bands in our analysis and how

they can be used as a preliminary test of exogeneity. For convenience, let us first restate the

triangular structure as:

Y1il = gl(X1i −X ′2iα0) +X ′2iβ0l + εil, (3.4)

X1i = mX1(Zi) + ηi, (3.5)

where mX1(z) = E(X1i|Zi = z), under the assumptions of the following:

E(ηi|Zi = z) = 0 and E(εil|Zi = z, ηi = η) = E(εil|ηi = η) 6= 0. (3.6)

The structure described in (3.4) to (3.6) suggests that we have

E[Y1il|(X1i −X ′2iα0), ηi]− E[X2i|(X1i −X ′2iα0), η]′β0l = gl(X1i −X ′2iα0) + ιl(ηi), (3.7)

where E[εil|(X1i − X ′2iα) = (x1 − x′2α), ηi = η] = E[εil|X2i = x2, ηi = η] = E[εil|ηi = η] ≡
ιl(η) 6= 0. Expression (3.7) then implies

Y1il = X ′2iβ0l + gl(X1i −X ′2iα0) + ιl(ηi) + eil, (3.8)

X1i = mX1(Zi) + ηi. (3.9)

where E(el|η) = 0. Let Ml[(X1i−X ′2iα0), ηi] = gl(X1i−X ′2iα0) + ιl(ηi). In order to use (3.8),

it is important to note that:
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ml(x1 − x′2α0) =

∫
Ml({x1 − x′2α0}, η) dη = gl(x1 − x′2α0) + c1

gl(x1 − x′2α0) = ml(x1 − x′2α0)− c1, (3.10)

where c1 =
∫
ι(η)dQ(η) and E(gl(·)) = 0; the estimation of which can be done based on the

marginal integration technique in Step 2.2.5 of Procedure 2.2.

Now, observe that if we were to impose a linear specification on ιl(·), (3.8) would be

closely similar to the extended partially linear (EPL) model discussed in Blundell et al.

(1998). In this case, Blundell et al. (1998) showed that a test of the exogeneity null can be

constructed by testing H0 : ιl = 0, where ιl is an unknown parameter. To allow for more

flexibility on the functional form between the total expenditure and its instrument, as an

alternative, one may apply an existing test of a parametric mean-regression model against a

nonparametric alternative; see Horowitz and Spokoiny (2001), for example. However, in the

current paper, we suggest that it is more convenient to simply construct the variability bands

for ιl(·) since its estimate is readily available. To do so, we use the following procedure.

Procedure 3.2

Step 3.2.1: Obtain an empirical estimate of gl(x1 − x′2α0) in (3.10); see also Remark 3.1.

Step 3.2.2: Regress (3.9) using the estimates in Step 3.2.1 to obtain the nonparametric

estimates of ιl(·).
Step 3.2.3: Compute the bias-corrected confidence bands for the nonparametric regression

using the procedure introduced in Xia (1998). Finally, the above mentioned (Bonferroni-

type) variability bands are obtained using a similar procedure discussed in Eubank and

Speckman (1993).

Remark 3.1. To complete Step 3.2.1, Procedure 2.2 in Section 2.2 can be useful. However,

some modifications are required to take the index coefficient α0 into account, which can be

interpreted as a general equivalence scale for household i. Steps 2.2.1 and 2.2.2 are directly

applicable since they are implemented using a given α across l = 1, 2, . . . , 6 commodities.

In this case, the objective function (2.17) in Step 2.2.3 is only used for the particular l

commodity. A new objective function is the summation of these individual functions, i.e.

min
α∈An,hv,l,hη̂,l∈Hn

Ĵ(α, hv,l, hη̂,l), which is minimised with respect to α and 12 bandwidth param-

eters, i.e. two for each commodity. Finally, Steps 2.2.4 and 2.2.5 are directly applicable

using α̂ as well as ĥv,l and ĥη̂,l. �
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3.3. Shape-Invariant Engel Curves

First, observe that (3.8) can also be re-stated as:

Ỹ1il = gl(X1i −X ′2iα0) + eil, (3.11)

where Ỹ1il = Y1il − X ′2iβ0l − ιl(ηi). The use of (3.11) relies on the following corresponding

expression of (3.10):

ml(η) =

∫
Ml(v, η) dv = ιl(η) + c2

ιl(η) = ml(η)− c2, (3.12)

where v = x1 − x′2α, c2 =
∫
g(v)dQ(v) and E(ιl(·)) = 0. Hence (3.11) suggests that we are

able to employ Procedure 3.3 below in order to obtain the estimates of the shape-invariant

Engel curves and the related confidence bands.

Procedure 3.3

Step 3.3.1: Obtain empirical estimates of ιl(η) in (3.12).

Step 3.3.2: Regress (3.11) using the estimates in Step 3.3.1 to obtain the nonparametric

estimates of gl(·).
Step 3.3.3: Compute the bias-corrected confidence bands about the nonparametric estima-

tor in Step 3.3.2 using the procedure introduced in Xia (1998).

3.4. Empirical Findings

Prior to presenting our empirical findings, let us recapitulate our empirical model of shape-

invariant Engel curves and made a final remark on the identification of the model. The

empirical model we are attempting to estimate is of the following form:

Y1il = gl(X1i − α0X2i) + β0lX2i + εil, (3.13)

X1i = mX1(Zi) + ηi.

However, the EGPLSI structure suggests that an unrestricted version of (3.13) is, in fact,

Y1il = gl(α01X1i−α0X2i) +β01,lX1i +β0lX2i + εil, while the restrictions α01 = 1 and β01,l = 0

leads to Y1il = gl(X1i−α0X2i)+β0,lX2i+εil. To ensure the model’s estimability, the following

assumption, which is based closely on Assumption I of Ai and Chen (2003), is required.
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Assumption 3.1. Suppose that

E [(Y1il −Ml(α01X1i − α0X2i)− β01,lX1i − β0lX2i) |X2i, Zi]

= E [(Y1il −Ml(α01X1i − α0X2i)− β0lX2i) |X2i, Zi] = 0,

which implies

E[Y1il|X2i, Zi] = E [(Ml(α01X1i − α0X2i) + β0lX2i) |X2i, Zi] ,

and, therefore,

E[β01,lX1i|X2i, Zi] = 0,

which is what is required by the perpendicularity of Xia et al. (1999). �

Hereafter, let us use ĝ1,l(·) and ι̂1,l(·) to denote the empirical estimates of gl(·) and ιl(·)
based on the marginal integration techniques, i.e. those obtained from Steps 3.2.1 and 3.3.1,

respectively. Furthermore, let us use ĝ2,l(·) and ι̂2,l(·) to denote the empirical estimates of

gl(·) and ιl(·) which are obtained from Steps 3.2.2 and 3.3.2, respectively. Table 3.2 below

presents the empirical estimates of the unknown parameters α0 and β0l (3.4). In addition,

to demonstrate the validity of our Procedures 3.2 and 3.3 above, in the table we also present

in the following average squared difference:

dgl =
1

n

n∑
i=1

{ĝ1,l(v̂)− ĝ2,l(v̂)}2 and dιl =
1

n

n∑
i=1

{ι̂1,l(η̂)− ι̂2,l(η̂)}2 ,

where v̂ = x1 − α̂x2.

Table 3.2. Empirical results

α̂ Categories of goods β̂l dgl dιl ĥv,l ĥη̂,l

0.5813 Alcohol -0.0053 3.9781e-07 3.2355e-06 0.581334 0.581333

Clothing 0.0005 7.8607e-07 6.4676e-06 0.581332 0.581330

Food -0.4541 3.4367e-04 1.7932e-04 0.065466 0.065465

Electricity and Gas 0.0133 6.9226e-06 2.8772e-06 0.065465 0.065466

Transportation -0.0024 5.3794e-07 2.3716e-06 0.581335 0.581333

Other 0.1245 1.6083e-04 2.8754e-04 0.065466 0.065465
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We will now summarise a number of important findings based on the empirical results

in Table 3.2 and Figures 3.4 to 3.9.

Figure 3.4. Engel curves for alcohol

Firstly, the average squared errors reported in the fourth and the fifth columns of Table

3.2 are virtually zero, which provides strong evidence in support of the procedures discussed

in Sections 3.2 and 3.3. Secondly, the signs and magnitudes of the estimates of the parameters

reported in the first and the third columns are consistent with what is reported in the existing

literature; see Blundell et al. (1998) for example. Furthermore, Figures 3.4 to 3.9, present the

Engel curves for the six budget shares in our HILDA sample, each of which consists of four

panels. The first and second panels present estimates of the Engel curves (for couples with

one child and couples with two children) based on the EGPLSI model with the endogeneity

being controlled using Procedure 2.2 and the endogeneity not being controlled by Procedure

2.1 in Section 2, respectively. Xia’s (1998) confidence bands are constructed for the Engel

curves of couples with one child. Furthermore, the fourth panels present estimates of the
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Engel curves computed using the partially linear model of Robinson (1988) for the sake of

comparison with the EGPLSI model. They show clear evidence that the partially linear

model restricts the empirical Engel curves to be within the same specification; see Blundell

et al. (1998) and Blundell et al. (2003) for example, where all empirical Engel curves are

similar to the quadratic functional form.

Figure 3.5. Engel curves for clothing

Finally, the third panel of each graph presents the nonparametric estimates of ιl(·) with

two sets of bands, namely the bias-corrected confidence bands for the nonparametric regres-

sion of Xia (1998) (black) and the Bonferroni-type variability bands discussed in Eubank

and Speckman (1993) (blue). Regarding alcohol, clothing and transportation, ιl(·) for these

cases do not seem to be statistically significant. These findings can be linked to the fact that

the shapes of the Engel curves presented in the top two panels are similar. In other words,

we show that the seriousness of the effect of the endogeneity problem, given an instrument,

depends very much on the relationship between the disturbances in the structural and the
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reduced relations, i.e. the relationship between ε and η, which, in this case, is summarised

by ιl(η). For a given instrument and therefore the corresponding η, ιl(·) can be a function

such that the impact of endogeneity is minimal, e.g. in the case of alcohol, clothing and

transportation. Otherwise, they may be functions which make the effect of the endogeneity

severe, such as the case of electricity and gas.

Figure 3.6. Engel curves for electricity and gas

Some of these Engel curves, e.g. those of alcohol, clothing and transportation, appear to

demonstrate that the Working-Leser linear logarithmic (Piglog) formulation is a reasonable

approximation. Nonetheless, for other shares, particularly electricity and gas, and food and

other goods, a more nonlinear relationship between the shares and the log expenditure is

evident. Regarding alcohol, clothing and transportation, although the Engel curves for our

two demographic groups both slope downward a broadly parallel shift in the Engel curves

does not seem to appear. In fact, the Engel curves of families with two children tend to

decline at a much faster rate as the log total expenditure increases.
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On the contrary, it is interesting to note how similar the shapes of the Engel curves are

for our two demographic groups for food and other goods. In these cases, there appears to

be a parallel shift in the Engel curves. A couple with one child spends around 15% more of

their budget on food than a couple with two children. However, couples with two children

end up spending 4% more of their budget on other goods than couples with one child at the

same level of expenditure. Such outcomes seem consistent with our intuitive belief about

consumption behaviour in practice, i.e. a couple with two children incurs additional costs

for having an extra child which are hidden within the other goods category.

Figure 3.7. Engel curves for transportation

4. Conclusions

Although the GPLSI model by Carroll et al. (1997), and Xia and Härdle (2006) has

great flexibility and advantages from both a PL model and a SI model perspective, it is

not appropriate for modelling the shape-invariant empirical Engel curve, since it does not
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allow the coefficient of the household equivalence scale to be included. Hence we consider

the EGPLSI model of Xia et al. (1999) and Gao (2007) in order to take the shape-invariant

specification into account.

Figure 3.8. Engel curves for food

However, the estimation method and procedure of the existing EGPLSI model are not

applicable, since the endogeneity of total expenditure is well known in the literature. Hence,

we establish the CF approach in the EGPLSI model to address endogeneity instead of the

nonparametric IV estimation of Ai and Chen (2003); see Blundell et al. (2007) for its ap-

plication to an semiparametric analysis of empirical Engel curves. The attractive feature of

the proposed estimation procedure in the current study is that the practicality of Xia et al.

(1999) approach is still applicable, despite the endogeneity control variable generated. The

same bandwidth parameters are used for the estimation of coefficient of an equivalence scale

and a structural Engel function. In addition, we also consider the “biased-adjusted” confi-

dence band for the nonparametric structural function since the index coefficient is estimated
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and the endogeneity control regressor is generated. This corrected confidence band gives

us useful information such as whether the effect of endogeneity is significant by analysing

whether the band is significantly different from zero.

Figure 3.9. Engel curves for other goods

We also provide Monte Carlo simulation studies and an application of the methodology

to the Australian HILDA dataset. The simulation studies illustrate the performance of CF

approach and the usefulness of the adjusted confidence band. The application illustrates that

the partially linear model restricts empirical Engel curves to be within the same specification

(see Blundell et al. (1998), and Blundell et al. (2003) for details), where all empirical Engel

curves are similar to the quadratic functional form. However, the EGPLSI model which, co-

herent with consumption theory, shows different functional forms for different commodities.

Also, the EGPLSI model shows that the effect of endogeneity on total expenditure is non-

trivial, the magnitude of the effects can be measured by the endogeneity control functions

and they are significantly different from zero.
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5. Appendix

In this section, we provide the necessary mathematical proofs of the main theoretical results of the

current paper. In Section 5.1, we show the proofs of Theorem 2.1 and Corollary 2.1 in two main steps. In

Section 5.2, we present the proofs of Theorem 2.2.

5.1. Proofs of Theorem 2.1 and Corollary 2.1

Step 1. Proofs of Theorem 2.1: Given α, η̂ and β̂, the feasible objective function (2.17) is expanded

as follows:

Ĵ(α, hv, hη̂) =
1

n

n∑
i=1

[
Yi − Ŷi + Ŷi − Ŷ2i −

{
Xi − X̂i + X̂i − X̂2i

}′
β̂

]2

≡ 1

n

n∑
i=1

[
Yi − Ŷi − δ̂Y,i −

{
Xi − X̂i − δ̂X,i

}′
β̂

]2

= Ĵ∗(α, hv, hη) +R1(α, hv, hη, hz), (5.A.1)

where Ŷ2i = m̂y(Vi, η̂i) + Ŵ2i and X̂2i = m̂x(Vi, η̂i) + Û2i with Ŵ2i =
∑
j 6=iWjL2,ij∑
j 6=iWjL2,ij

, Û2i =
∑
j 6=i UjL2,ij∑
j 6=iWjL2,ij

and L2,ij = Lhv,hη (Vi − Vj , η̂i − η̂j), and δ̂Y,i = Ŷ2i − Ŷi, δ̂X,i = X̂2i − X̂i with Ŷi = m̂y(Vi, ηi) + Ŵi,

X̂i = m̂x(Vi, ηi) + Ûi with Ŵi =
∑
j 6=iWjLij∑
j 6=i Lil

, Ûi =
∑n
j 6=i UjLij∑n
j 6=i Lil

and Lij = Lhv,hη (Vi − Vj , ηi − ηj). Let us note

that m = m(v0, η) and m̃ = E(m|α). Note that the term in the last equation of (5.A.1), Ĵ∗(α, hv, hη), is

further expanded, as shown below:

Ĵ∗(α, hv, hη) =
1

n

n∑
i=1

[
Yi − Ŷi −

{
Xi − X̂i

}′
β̂α

]2

= J̃(α) + T (hv, hη) +R2(α, hv, hη),

where:

R2(α, hv, hη) = (β̂ − β0)′Sm̃x−m̂x(β0 − β̂) + (β̂ − β0)′SÛ (β0 − β̂)− 2(β̂ − β0)′Smx−m̃x,m̃x−m̂x(β0 − β̂)

− 2(β̂ − β0)′Smx−m̃x,Û (β0 − β̂) + 2(β̂ − β0)′Sm̃x−m̂x,U (β0 − β̂)− 2(β̂ − β0)′Sm̃x−m̂x,Û (β0 − β̂)

− 2(β̂ − β0)′SUÛ (β0 − β̂) + Sm̃−m̂ + 2Sm−m̃,m̃−m̂ − 2Seê + Sê − 2(β̂ − β0)′Sm̃x−m̂x,m−m̃

+ 2(β̂ − β0)′SÛ,m−m̃ − 2(β̂ − β0)′Smx−m̃x,m̃−m̂ − 2(β̂ − β0)Sm̃x−m̂x,m̃−m̂ − 2(β̂ − β0)′SU,m̃−m̂

+ 2(β̂ − β0)′SÛ,m̃−m̂ − 2(β̂ − β0)′Sm̃x−m̂x,e + 2(β̂ − β0)′SÛe + 2(β̂ − β0)′SUê + 2(β̂ − β0)′Smx−m̃x,ê

+ 2(β̂ − β0)′Sm̃x−m̂x,ê + 2(β̂ − β0)′SUê − 2(β̂ − β0)SÛ ê + 2Sm̃−m̂,e − 2Sm−m̃,ê − 2Sm̃−m̂,ê − Sm−m̂0

with Ỹi = m̃y,i and X̃i = m̃x,i since E(w|x, η) = 0 and E(u|x, η) = 0, and m̂0 =
∑
j 6=imjL0,ij∑
j 6=i L0,ij

, with

L0,ij = Lhv,hη (V0i − V0j , ηi − ηj). The results of sup
α∈An,hv,hη∈Hn

|R2(α, hv, hη)| = op(n
−1/2) are easily shown

using the fact that β0 − β̂ = op(n
−1/2) shown below, and Propositions 5.A.1, 5.A.2, 5.A.3, 5.A.6, 5.A.7,

5.A.9, 5.A.12, 5.A.13, and 5.A.14. The last term in R2 is Sm−m̂0 = Op(n
−1h−1

v h−q2η ) + Op((h
2
v + h2

η)2) by

a simple non-parametric analysis. This is a simple extension of the results in Xia et al. (1999). Hence the

objective function (5.A.1) is rewritten as:

Ĵ(α, hv, hη̂) = J̃(α) + T (hv, hη) +R1(α, hv, hη, hz) + op(n
−1/2),
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where:

R1(α, hz, hv, hη) = (β̂ − β0)′Sδ̂X (β̂ − β0) + Sδ̂m + Sδ̂e + 2(β̂ − β0)′Sδ̂X δ̂m + 2(β̂ − β0)′Sδ̂X δ̂e − 2Sδ̂mδ̂e

− 2(β̂ − β0)′Sδ̂X ,mx−m̃x(β̂ − β̂0)− 2(β̂ − β0)′Sδ̂X ,m̃x−m̂x(β̂ − β0)− 2(β̂ − β0)′Sδ̂XU (β̂ − β0)

+ 2(β̂ − β0)′Sδ̂X Û (β̂ − β) + 2(β̂ − β0)′Sδ̂X ,m−m̃ + 2(β̂ − β0)′Sδ̂X ,m̃−m̂ + 2(β̂ − β0)′Sδ̂Xe − 2(β̂ − β0)′Sδ̂X ê

+2(β̂ − β0)′Sδ̂m,mx−m̃x + 2(β̂ − β0)Sδ̂m,m̃x−m̂x + 2(β̂ − β0)′Sδ̂mU − 2(β̂ − β0)′Sδ̂mÛ − 2Sδ̂m,m−m̃

−2Sδ̂m,m̃−m̂ − 2Sδ̂me + 2Sδ̂mê + 2(β̂ − β0)Sδ̂e,mx−m̃x + 2(β̂ − β0)′Sδ̂e,m̃x−m̂x + 2(β̂ − β0)Sδ̂eU

−2(β̂ − β0)′Sδ̂eÛ − 2Sδ̂e,m−m̃ − 2Sδ̂e,m̃−m̂ − 2Sδ̂ee + 2Sδ̂eê.

In particular, we show that sup
α∈An,hv,hη,hz∈Hn

|R1(α, hz, hv, hη)| = op(n
−1/2) by using the fact that β̂ =

β0 + op(n
−1/2) and Propositions 5.A.4, 5.A.5, 5.A.8, 5.A.10, 5.A.11 and 5.A.15 below. Hence we have:

Ĵ(α, hv, hη̂) = J̃(α) + T (hv, hη) + op(n
−1/2).

�

Step 2. Proofs of Corollary 2.1: We can now present the proofs of asymptotic properties of α̂ and

β̂. In view of the representation of ||α− α0|| ≤ Cn−1/2, we may write, for bounded values of x:

m(v0, η) = m(v, η)− x′(α− α0)m
(1)
0 +O(n−1), (5.A.2)

m(v0, η|v, η) = m(v, η)−mx(x|v, η)′(α− α0)m
(1)
0 +O(n−1), (5.A.3)

where mx(x|v, η) = E(XAx |v, η). Firstly, let us consider the asymptotic properties of α̂. Using (5.A.2) and

(5.A.3), we have the expansion of J̃(α) below:

J̃(α) =
1

n

n∑
i=1

[
mi − m̃i + U ′i(β0 − β̂) + ei

]2
=

1

n

n∑
i=1

{mi − m̃i}2 +
2

n

n∑
i=1

{mi − m̃i} ei +
2

n

n∑
i=1

{mi − m̃i}U ′i(β0 − β̂)

+ terms independent of α+ op(n
−1/2)

= (α0 − α)′

[
1

n

n∑
i=1

{
m

(1)
0

}2

UiU
′
i

]
(α0 − α) + 2

1

n

n∑
i=1

eim
(1)
0 U ′i(α0 − α)

+ 2(β0 − β̂)′

[
1

n

n∑
i=1

m
(1)
0 UiU

′
i

]
(α0 − α) + op(n

−1/2)

= (α0 − α)′

[
1

n

n∑
i=1

{
m

(1)
0

}2

U0iU
′
0i

]
(α0 − α) + 2

1

n

n∑
i=1

eim
(1)
0 U ′0i(α0 − α)

+ 2(β0 − β̂)′

[
1

n

n∑
i=1

m
(1)
0 U0iU

′
0i

]
(α0 − α) + op(1) +Op(n

−1/2), (5.A.4)

where U0i = {Xi − E(Xi|V0i, ηi)}.
Given α0, (β0 − β̂) = −

(
1
n

∑n
i=1 U0iU

′
0i

)− 1
n

∑n
i=1 U0iei (see the last equation of (5.A.8) below). Hence
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we have:

J̃(α) = (α0 − α)′

[
1

n

∑
i=1

{
m

(1)
0

}2

U0iU
′
0i

]
(α0 − α) + 2

1

n

n∑
i=1

eim
(1)
0 U ′0i(α0 − α)

− 2

( 1

n

n∑
i=1

U0iU
′
0i

)−
1

n

n∑
i=1

eiU
′
0i

[ 1

n

n∑
i=1

m
(1)
0 U0iU

′
0i

]
(α0 − α) + op(1) +Op(n

−1/2)

= (α0 − α)′
{
m

(1)
0

}2

SU0
(α0 − α) + 2m

(1)
0 SeU0

(α0 − α)− 2
{

(SU0
)
−
SeU0

}{
m

(1)
0 SU0

(α0 − α)
}

+ op(1).

Given η̂ and α, we write the linear reduced form from Robinson (1988) as follows:

Yi − Ŷ3i = (Xi − X̂3i)
′β0 + (mi − m̂3i) + (ei − ê3i), (5.A.5)

where Ŷ3i = m̂y(V̂i, η̂i) + Ŵ3i, X̂3i = m̂x(V̂i, η̂i) + Û3i, m̂3i =
∑n
j=1 m̃jL3,ij∑n
l=1 L3,il

, ê3i =
∑n
j=1 ejL3,ij∑n
l=1 L3,il

with Ŵ3i =∑n
j=1WjL3,ij∑n
l=1 L3,il

and Û3i =
∑n
j=1 UjL3,ij∑n
l=1 L3,il

with L3,ij = Lhv,hη (V̂i − V̂j , η̂i − η̂j).
Hence from (5.A.5), we obtain:

β̂ − β0 = S−1

X−X̂3

(
SX−X̂3,m−m̂3

+ SX−X̂3,e−ê3

)
. (5.A.6)

We further decompose (5.A.5), as shown below:

Yi − Ŷ1i + Ŷ1i − Ŷ3i =
{
Xi − X̂1i + X̂1i − X̂3i

}′
β0 +mi − m̂1i + m̂1i − m̂3i

+ ei − ê1i + ê1i − ê3i

Yi − Ŷ1i − δ̆y,i ≡ (Xi − X̂1i − δ̆x,i)′β0 + (mi − m̂1i − δ̆m,i) + (ei − ê1i − δ̆e,i)

Yi − Ỹi + Ỹi − Ŷ1i − δ̆y,i ≡ (Xi − X̃i + X̃i − X̂1i − δ̆x,i)′β0 + (mi − m̃i + m̃i − m̂1i − δ̆mi)

+ (ei − ê1i − δ̆e,i). (5.A.7)

The last term of the right-hand side in (5.A.7) is from E(e|x, η) = 0, where δ̆y,i = Ŷ3i − Ŷ1i, δ̆x,i =

X̂3i−X̂1i, δ̆m,i = m̂3i−m̂1i, δ̆e,i = ê3i−ê1i, Ŷ1i = m̂y(V̂i, ηi)+Ŵ1i, X̂1i = m̂x(V̂i, ηi)+Û1i, m̂1i =
∑n
j=1 m̃jL1,ij∑n
l=1 L1,il

,

ê1i =
∑n
j=1 ejL1,ij∑n
l=1 Lil

, Ŵ1i =
∑n
j=1WjL1,ij∑n
l=1 L1,il

and Û1i =
∑n
j=1 UjL1,ij∑n
l=1 L1,il

with L1,ij = Lhv,hη (V̂i−V̂j , ηi−ηj). By utilising

the decomposition in (5.A.7), we have:

SX−X̂3
= SX−X̃ + SX̃−X̂1

+ Sδ̆X + 2SX−X̃,X̃−X̂1
− 2SX−X̃,δ̆X − 2SX̃−X̂1,δ̆X

= Smx−m̃x + Sm̃x−m̂x1 + SU + SÛ1
+ Sδ̆X + 2Smx−m̃x,m̃x−m̂x1 + 2Smx−m̃x,U − 2Smx−m̃x,Û1

− Smx−m̃x,δ̆X − 2Sm̃x−m̂x1 ,U − 2Sm̃x−m̂x1 ,Û1
− 2Smx−m̃x,δ̆X − 2SUÛ1

− 2SUδ̆X + 2SÛ1δ̆X
;

Sm−m̂3
= Sm−m̃ + Sm̃−m̂1

+ Sδ̆m + 2Sm−m̃,m̃−m̂1
− 2Sm−m̃,δ̆m − 2Sm̃−m̂1,δ̆m

;

Se−ê3 = Se + Sê1 + Sδ̆e − 2Seê1 − 2Seδ̆e + 2Sê1δ̆e;

SX−X̂3,m−m̂3
= Smx−m̃x,m−m̃ + Smx−m̃x,m̃−m̂1

− Smx−m̃x,δ̆m + Sm̃x−m̂x1 ,m−m̃ + Sm̃x−m̂x1 ,m̃−m̂1
− Sm̃x−m̂x1 ,δ̆m

+ Sm−m̃,U + Sm̃−m̂1,U − SUδ̆m − Sm−m̃,Û1
− Sm̃−m̂1,Û1

+ SÛ1δ̆m
− Sm−m̃,δ̆X − Sm̃−m̂1,δ̆X

+ Sδ̆X δ̆m ;

SX−X̂3,e−ê3 = Smx−m̃x,e − Smx−m̃x,ê1 − Smx−m̃x,δ̆e + Sm̃x−m̂x1 ,e − Sm̃x−m̂x1 ,ê1 − Sm̃x−m̂x1 ,δ̆e
+ SUe − SUê1 − SUδ̆e − SÛ1e

+ SÛ1ê1
+ SÛ1δ̆e

− Sδ̆Xe + Sδ̆X ê1 + Sδ̆Xδ̆e;

Sm−m̂3,e−ê3 = Sm−m̃,e − Sm−m̃,ê1 − Sm−m̃,δ̆e + Sm̃−m̂1,e − Sm̃−m̂1,ê1 − Sm̃−m̂1,δ̆e
− Sδ̆me + Sδ̆mê1 + Sδ̆eδ̆m .
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Note that we approximate two kernel functions to be L3,ij = L2,ij + Op(n
−1/2h−1

v ) and L1,ij = Lij +

Op(n
−1/2h−1

v ) uniformly in i. Hence, we employ L2,ij and Lij instead of L3,ij and L1,ij , respectively, for the

case of β̂ in Propositions 5.A.1 to 5.A.15.

By Propositions 5.A.1 to 5.A.15, and (5.A.2) and (5.A.3), we obtain that (5.A.6) is:

(β̂ − β0) =

(
1

n

n∑
i=1

UiU
′
i

)−{
1

n

n∑
i=1

Uiei −
1

n

n∑
i=1

Ui(mi − m̃i)

}
+ op(n

−1/2)

=

(
1

n

n∑
i=1

UiU
′
i

)−{
1

n

n∑
i=1

Uiei −
1

n

n∑
i=1

m
(1)
0 UiU

′
i(α0 − α)

}
+ op(n

−1/2)

=

(
1

n

n∑
i=1

U0iU
′
0i

)−{
1

n

n∑
i=1

U0iei −
1

n

n∑
i=1

m
(1)
0 U0iU

′
0i(α0 − α)

}
+ op(1) +Op(n

−1/2). (5.A.8)

Given β0, α0 − α =

(
1
n

∑n
i=1

{
m

(1)
0

}2

U0iU
′
0i

)−
1
n

∑n
i=1m

(1)
0 eiU

′
0i (see the last equation in (5.A.4)).

Hence we have:

(β̂ − β0) =

(
1

n

n∑
i=1

U0iU
′
0i

)− 1

n

n∑
i=1

U0iei −
1

n

n∑
i=1

m
(1)
0 U0iU

′
0i

(
1

n

n∑
i=1

{
m

(1)
0

}2

U0iU
′
0i

)−
1

n

n∑
i=1

m
(1)
0 eiU

′
0i


+ op(1) = (SU0

)
−

{
SU0e −m

(1)
0 SU0

({
m

(1)
0

}2

SU0

)−
m

(1)
0 SeU0

}
+ op(1).

Given both β̂ and α̂, the variance of e is:

σ̂2 = Se−ê3 + Sm−m̂3
+ (β̂ − β0)′S(X−X̂3)(β̂ − β0)− 2(β̂ − β0)′S(X−X̂3)′,e−ê3

− 2(β̂ − β0)′S(X−X̂3),m−m̂3
+ 2Sm−m̂3,e−ê3 (5.A.9)

= Se + op(1)
p→ σ2,

by Propositions 5.A.1 to 5.A.15 below, the law of large numbers, and the i.i.d. assumption of ei . The

other nine terms are (β̂ − β0)′Smx−m̃x(β̂ − β0); (β̂ − β0)′Smx−m̃x,U (β̂ − β0); (β̂ − β0)′SU (β̂ − β0); Sm−m̃;

Smx−m̃x,m−m̃; Sm−m̃,U ; Smx−m̃x,e; SUe and Sm−m̃,e equal to op(n
−1/2).

By the central limit theorem and the law of large numbers, the asymptotic normalities of α̂ and β̂ are:

√
n(β̂ − β0) =

√
n (SU0

)
−

{
SU0e −m

(1)
0 SU0

({
m

(1)
0

}2

SU0

)−
m

(1)
0 SeU0

}
+ op(1)

→D N

(
0, σ2

[
Φ−U0
−
(
m

(1)
0 ΦU0

)−
ΦU0

{
m

(1)
0

}2 (
m

(1)
0 ΦU0

)−])
√
n(α̂− α0) =

√
n

({
m

(1)
0

}2

SU0

)− {
m

(1)
0 SeU0

−m(1)
0 SU0

(SU0
)
−
SeU0

}
+ op(1)

→D N

(
0, σ2

[({
m

(1)
0

}2

ΦU0

)−
−
{
m

(1)
0 ΦU0

}−
ΦU0

{
m

(1)
0 ΦU0

}−])
.

�

Note that the stated orders of the remainder term R1(α, hv, hη, hz) are available uniformly in α ∈ An
and hv, hη, hz ∈ Hn, using the uniform bounds in Härdle et al. (1993). Let ϕn(α, hv, hη, hz) be a possible
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quantity for which we show that:

sup
α∈An,hv,hη,hz∈Hn

|ϕn(α, hv, hη, hz)| = op(n
a), (5.A.10)

since we have:

sup
α∈An,hv,hη,hz∈Hn

E
(
ϕn(α, hv, hη, hz)/n

b
)2l

= O(1), (5.A.11)

for all integers l ≥ 1 and where b < a. For details of the equations (5.A.10) and (5.A.11), see Step (ii)

of the proof section 4 in Härdle et al. (1993). For proofs of Propositions 5.A.1 to 5.A.15, we assume that

hη,1 = · · · = hη,q2 = hη and hz,1 = · · · = hz,q2 = hz for expositional simplicity.

Proposition 5.A.1.

(i)
√
nSm̃x−m̂x = Op(n

−1/2h−1
v h−q2η ) +Op(n

1/2(h2
v + h2

η)2);

(ii)
√
nSm̃−m̂ = Op(n

−1/2h−1
v h−q2η ) +Op(n

1/2(h2
v + h2

η)2).

Proof: Let ϕ(·) denote m(·) and mx(·), and ϕ̃(·) denote m̃(·) and m̃x(·). We deduce from (5.A.2) and

(5.A.3) that, uniformly in i, we have:

ϕ̃i − ϕ̂i =

∑
j 6=i
{
ϕ(X ′iα0, ηi|v, η)− ϕ(X ′jα0, ηj)

}
Lij∑

j 6=i Lij

=

∑
j 6=i

{
ϕ̃i − ϕ̃j + U ′j(α− α0)ϕ

(1)
0

}
Lij∑

j 6=i Lij
+O(n−1)

=
(nhvh

q2
η )−1

∑
j 6=i

{
ϕ̃i − ϕ̃j + U ′j(α− α0)ϕ

(1)
0

}
Lij

f(v, η)

[
1− f̂(v, η)− f(v, η)

f̂(v, η)

]
+ o(1),

where ϕ
(1)
0 = ∂ϕ(v0, η)/∂v0. Note that since

(
f̂(v, η)− f(v, η)

)
is Op(nhvh

q2
η )−1/2 + Op(h

2
v + h2

η) so[
1− f̂(v,η)−f(v,η)

f̂(v,η)

]
can be dropped, hence we consider only the numerator terms in the rest of the section.

By identical distribution, E(Sϕ̃−ϕ̂) = E
{

(ϕ̃i − ϕ̂i)2
}

. We can easily obtain those E(ϕ̃i − ϕ̂i) = O(h2
v +

h2
η) and V ar(ϕ̃i − ϕ̂i) = O(nhvh

q2
η )−1, where:

V ar(ϕ̃i − ϕ̂i) = V ar

 1

nhvh
q2
η

∑
j 6=i

(ϕ̃i − ϕ̃j)Lij

+ V ar

 1

nhvh
q2
η

∑
j 6=i

U ′j(α− α0)ϕ
(1)
0 Lij


+2Cov

 1

nhvh
q2
η

∑
j 6=i

(ϕ̃i − ϕ̃j)Lij ,
1

nhvh
q2
η

∑
j 6=i

U ′j(α− α0)ϕ
(1)
0 Lij

 ,

V ar

 1

nhvh
q2
η

∑
j 6=i

(ϕ̃i − ϕ̃j)Lij

 = O(nhvh
q2
η )−1,

V ar

 1

nhvh
q2
η

∑
j 6=i

U ′j(α− α0)ϕ
(1)
0

 = O(n2hvh
q2
η )−1,

Cov

 1

nhvh
q2
η

∑
j 6=i

(ϕ̃i − ϕ̃j)Lij ,
1

nhvh
q2
η

∑
j 6=i

U ′j(α− α0)ϕ
(1)
0 Lij

 = O(n−3/2h−1
v h−q2η ).

Hence E(Sϕ̃−ϕ̂) = O(nhvh
q2
η )−1 +O((h2

v + h2
η)2). �
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Proposition 5.A.2.
√
nSm̃x−m̂x,m̃−m̂ = Op(n

−1/2h−1
v h−q2η ) +Op(n

1/2(h2
v + h2

η)2).

Proof: Proposition 5.A.1 (i) and (ii), and the Cauchy inequality provide the proof. �

Proposition 5.A.3.

(i)
√
nSÛ = Op(n

−1/2h−1
v h−q2η );

(ii)
√
nSê = Op(n

−1/2h−1
v h−q2η ).

Proof: Let %i denote Ui and ei, and E(%i|L) = 0 almost surely, where L = (X, η), hence E(S%̂) = E(%̂2
i ).

Then we have:

E(%̂i)
2 =

1

n2h2
vh
q2
η
E

∑
j 6=i

%2
jL

2
ij

 = O(nhvh
q2
η )−1.

�

Proposition 5.A.4.

(i)
√
nSδ̂X = Op(n

−1h
−qz/2
z h

−1/2
v h

−(q2+2)/2
η ) +Op(n

1/2h2
z(h

2
v + h2

η));

(ii)
√
nSδ̂m = Op(n

−1h
−qz/2
z h

−1/2
v h

−(q2+2)/2
η ) +Op(n

1/2h2
z(h

2
v + h2

η));

(iii)
√
nSδ̂e = Op(n

−1h
−qz/2
z h

−1/2
v h

−(q2+2)/2
η ) +Op(n

1/2h2
z(h

2
v + h2

η)).

Proof: Let δ denote δX , δm and δe.Then we have:

δ̂i = δ2,i − δ1,i =

∑
j 6=i δjL2,ij∑
j 6=i L2,ij

−
∑
j 6=i δjLij∑
j 6=i Lij

.

The Taylor expansion of the kernel function, L2,ij, is:

L2,ij = Lij + L
(1)
ij

(
4ij
hη

)
+ L

(2)
ij (τ)

(
4ij
hη

)2

,

where L
(r)
ij is the rth derivative of Lij with respect to η with r = 1 or 2, 4ij = {m̂x(Zj)−mx(Zj)} −

{m̂x(Zi)−mx(Zi)} and τ is between the segment line of ηj − ηi and η̂j − η̂i. Hence, the denominator of δ2,i

is:
1

nhvh
q2
η

∑
j 6=i

L2,ij =
1

nhvh
q2
η

∑
j 6=i

Lij +
1

nhvh
q2+1
η

∑
j 6=i

L
(1)
ij 4ij +Rij ,

where Rij is the remainder term and the second term on the right-hand side is op(n
−1/2), because of the
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following:

E

 1

nhvh
q2+1
η

∑
j 6=i

L
(1)
ij 4ij

2

=
1

n2h2
vh

2(q2+1)
η

E

∑
j 6=i

(
L

(1)
ij

)2

42
ij

+
2

n2h2
vh

2(q2+1)
η

E

∑
j 6=i

∑
k 6=i,j

L
(1)
ij L

(1)
ik 4ij4ik


=

1

n4h2qz
z h2

vh
2(q2+1)
η

E

∑
j 6=i

(
L

(1)
ij

)2

∑
l 6=j

C(l,j;K) −
∑
l 6=i

C(l,i;K)


2


+
2

n4h2qz
z h2

vh
2(q2+1)
η

E

∑
j 6=i

(
L

(1)
ij

)2

∑
l 6=j

C(l,j;K) −
∑
l 6=i

C(l,i;K)


 ∑
m6=j,l

C(m,j;K) −
∑
m6=i,l

C(m,i;K)




+
2

n4h2qz
z h2

vh
2(q2+1)
η

E

∑
j 6=i

∑
k 6=i,j

L
(1)
ij L

(1)
ik

∑
l 6=j

C(l,j;K) −
∑
l 6=i

C(l,i;K)


 ∑
m 6=k,l

C(m,k;K) −
∑
m 6=i,l

C(m,i;K)




= O
(
n−2h−qzz h−1

v h−(q2+2)
η

)
+O

(
n−1h4

zh
−1
v h−(q2+2)

η

)
+O

(
h4
z(h

2
v + h2

η)2
)
,

where C(l,j;K) = {mx(Zl)−mx(Zj)}Kjl. Hence δ̂i =
(nhvh

q2+1
η )−1 ∑

j 6=i δjL
(1)
ij 4ij

(nhvhη)−1
∑
j 6=i Lij+op(n−1/2)

.

Now consider E(
√
nSδ̂), we have:

E(
√
nSδ̂) =

1

n

n∑
i=1

E(δ̂2
i ) +

2

n

n∑
i=1

n∑
j=1,6=i

E(δ̂iδ̂j). (5.A.12)

Using a similar argument to the above, the two terms in the right-hand-side of (5.A.12) are:

E
(
δ̂2
i

)
=

1

n4h2qz
z h2

vh
2(q2+1)
η

E

∑
j 6=i

δjL
(1)
ij

∑
l 6=j

C(l,j;K) −
∑
l 6=i

C(l,i;K)


2

=
1

n4h2qz
z h2

vh
2(q2+1)
η

E

∑
j 6=i

δ2
j

(
L

(1)
ij

)2

∑
l 6=j

C(l,j;K) −
∑
l 6=i

C(l,i;K)


2


+
2

n4h2qz
z h2

vh
2(q2+1)
η

E

∑
j 6=i

δ2
j

(
L

(1)
ij

)2

∑
l 6=j

C(l,j;K) −
∑
l 6=i

C(l,i;K)


 ∑
m6=j,l

C(m,j;K) −
∑
m 6=i,l

C(m,i;K)




= O
(
n−2h−qzz h−1

v h−(q2+2)
η

)
+O

(
n−1h4

zh
−1
v h−(q2+2)

η

)
,

and

E
(
δ̂iδ̂j

)
=

2

n4h2qz
z h2

vh
2(q2+1)
η

∑
j 6=i

∑
k 6=i,j

× E

δjL(1)
ij δkL

(1)
ik

∑
l 6=j

C(l,j;K) −
∑
l 6=i

C(l,i;K)


∑
m 6=k

C(m,k;K) −
∑
m 6=i,l

C(m,i;K)




= O
(
h4
z(h

2
v + h2

η)2
)
.

�
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Proposition 5.A.5.

(i)
√
nSδ̂X δ̂m = Op(n

−1h
−qz/2
z h

−1/2
v h

−(q2+2)/2
η ) +Op(n

1/2h2
z(h

2
v + h2

η));

(ii)
√
nSδ̂X δ̂e = Op(n

−1h
−qz/2
z h

−1/2
v h

−(q2+2)/2
η ) +Op(n

1/2h2
z(h

2
v + h2

η));

(iii)
√
nSδ̂mδ̂e = Op(n

−1h
−qz/2
z h

−1/2
v h

−(q2+2)/2
η ) +Op(n

1/2h2
z(h

2
v + h2

η)).

Proof: Proposition 5.A.4 (i), (ii) and (iii), and the Cauchy inequality provide the proof. �

Proposition 5.A.6.

(i)
√
nSUÛ = Op(n

−1/2h
−1/2
v h

−q2/2
η );

(ii)
√
nSÛe = Op(n

−1/2h
−1/2
v h

−q2/2
η );

(iii)
√
nSeê = Op(n

−1/2h
−1/2
v h

−q2/2
η );

(iv)
√
nSUê = Op(n

−1/2h
−1/2
v h

−q2/2
η ).

Proof: Since E(%i|L) = 0, we have:

E
(√
nS%%̂

)2
=

1

n

n∑
i=1

E
(
%2
i %̂

2
i

)
,

where:

E(%2
i %̂

2
i ) =

1

n2h2
vh

2q2
η

E

%2
i

∑
j 6=i

%2
jL

2
ij

 = O(nhvh
q2
η )−1.

�

Proposition 5.A.7.

(i)
√
nSm̃x−m̂x,U = Op(n

−1/2h
−1/2
v h

−q2/2
η );

(ii)
√
nSm̃−m̂,U = Op(n

−1/2h
−1/2
v h

−q2/2
η );

(iii)
√
nSm̃x−m̂x,e = Op(n

−1/2h
−1/2
v h

−q2/2
η );

(iv)
√
nSm̃−m̂,e = Op(n

−1/2h
−1/2
v h

−q2/2
η ).

Proof: Since E(%i|L) = 0, we have:

E(
√
nS%,ϕ̃−ϕ̂)2 =

1

n

n∑
i=1

E
{
%2
i (ϕ̃i − ϕ̂i)2

}
,

where

E
{
%2
i (ϕ̃i − ϕ̂i)2

}
=

1

n2h2
vh

2q2
η

E

%2
i

∑
j 6=i

(
C∗(i,j;L)

)2

+
2

n2h2
vh

2q2
η

E

%2
i

∑
j 6=i

∑
l 6=i,j

C∗(i,j;L)C
∗
(i,l;L)


= O(n−1h−1

v h−q2η ) +O((h2
v + q2h

2
η)2)

with C∗(i,j;L) =
{
ϕ̃i − ϕ̃j + U ′j(α− α0)ϕ

(1)
0

}
Lij. �
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Proposition 5.A.8.

(i)
√
nSUδ̂X = Op(n

−1h
−qz/2
z h

−1/2
v h

−(q2+2)/2
η ) +Op(n

−1/2h2
zh
−1/2
v h

−(q2+2)/2
η );

(ii)
√
nSeδ̂e = Op(n

−1h
−qz/2
z h

−1/2
v h

−(q2+2)/2
η ) +Op(n

−1/2h2
zh
−1/2
v h

−(q2+2)/2
η );

(iii)
√
nSeδ̂m = Op(n

−1h
−qz/2
z h

−1/2
v h

−(q2+2)/2
η ) +Op(n

−1/2h2
zh
−1/2
v h

−(q2+2)/2
η );

(iv)
√
nSeδ̂X = Op(n

−1h
−qz/2
z h

−1/2
v h

−(q2+2)/2
η ) +Op(n

−1/2h2
zh
−1/2
v h

−(q2+2)/2
η );

(v)
√
nSUδ̂m = Op(n

−1h
−qz/2
z h

−1/2
v h

−(q2+2)/2
η ) +Op(n

−1/2h2
zh
−1/2
v h

−(q2+2)/2
η );

(vi)
√
nSUδ̂e = Op(n

−1h
−qz/2
z h

−1/2
v h

−(q2+2)/2
η ) +Op(n

−1/2h2
zh
−1/2
v h

−(q2+2)/2
η ).

Proof: Since E(%i|L) = 0, we have

E(
√
nS%δ̂)

2 =
1

n

n∑
i=1

E
(
%2
i δ̂

2
i

)
,

where

E(%2
i δ̂

2
i ) =

1

n4h2qz
z h2

vh
2(q2+1)
η

E

%2
i

∑
j 6=i

δ2
j

(
L

(1)
ij

)2

∑
l 6=j

C(l,j;K) −
∑
l 6=i

C(l,i;K)


2


+
2

n4h2qz
z h2

vh
2(q2+1)
η

E

%2
i

∑
j 6=i

δ2
j

(
L

(1)
ij

)2

∑
l 6=j

C(l,j;K) −
∑
l 6=i

C(l,i;K)


×

 ∑
m 6=j,l

C(m,j;K) −
∑
m6=i,l

C(m,i;K)




= O
(
n−2h−qzz h−1

v h−(q2+2)
η

)
+O

(
n−1h4

zh
−1
v h−(q2+2)

η

)
,

using similar arguments to those in Proposition 5.A.4. �

Proposition 5.A.9.

(i)
√
nSm̃x−m̂x,Û = Op(nhvh

q2
η )−1 +Op(n

1/2(h2
v + h2

η)2);

(ii)
√
nSm̃−m̂,Û = Op(nhvh

q2
η )−1 + +Op(n

1/2(h2
v + h2

η)2);

(iii)
√
nSm̃x−m̂x,ê = Op(nhvh

q2
η )−1 +Op(n

1/2(h2
v + h2

η)2);

(iv)
√
nSm̃−m̂,ê = Op(nhvh

q2
η )−1 +Op(n

1/2(h2
v + h2

η)2).

Proof:

E
(√
nSϕ̃−ϕ̂,%̂

)2
=

1

n

n∑
i=1

E
{
%̂2
i (ϕ̃i − ϕ̂i)2

}
+

2

n

n∑
i=1

n∑
j=1,6=i

E {%̂i%̂j(ϕ̃i − ϕ̂i)(ϕ̃j − ϕ̂j)} ,
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where

E
{
%̂2
i (ϕ̃i − ϕ̂i)2

}
=

1

n4h4
vh

4q2
η

E

∑
j 6=i

∑
l 6=i

%2
jL

2
ij

(
C∗(i,l:L)

)2


+

2

n4h4
vh

4q2
η

E

∑
j 6=i

∑
l 6=i

∑
k 6=i,l

%2
jL

2
ijC
∗
(i,l;L)C

∗
(i,k,L)


= O(n−2h−2

v h−2q2
η ) +O(n−1h−1

v h−q2η (h2
v + h2

η)2),

E {%̂i%̂j(ϕ̃i − ϕ̂i)(ϕ̃j − ϕ̂j)} =
1

n4h4
vh

4q2
η

E

∑
l 6=i

∑
s6=j

∑
k 6=i

∑
m 6=j

%l%sLilLjsC
∗
(i,k;L)C

∗
(j,m;L)


= O((h2

v + h2
η)4).

�

Proposition 5.A.10.

(i)
√
nSÛ δ̂X = Op

(
n−1h

−qz/2
z h−1

v h
−(q2+1)
η

)
+Op

(
n1/2h2

z(h
2
v + h2

η)
)
;

(ii)
√
nSêδ̂e = Op

(
n−1h

−qz/2
z h−1

v h
−(q2+1)
η

)
+Op

(
n1/2h2

z(h
2
v + h2

η)
)
;

(iii)
√
nSÛ δ̂m = Op

(
n−1h

−qz/2
z h−1

v h
−(q2+1)
η

)
+Op

(
n1/2h2

z(h
2
v + h2

η)
)
;

(iv)
√
nSêδ̂X = Op

(
n−1h

−qz/2
z h−1

v h
−(q2+1)
η

)
+Op

(
n1/2h2

z(h
2
v + h2

η)
)
;

(v)
√
nSêδ̂m = Op

(
n−1h

−qz/2
z h−1

v h
−(q2+1)
η

)
+Op

(
n1/2h2

z(h
2
v + h2

η)
)
;

(vi)
√
nSÛ δ̂e = Op

(
n−1h

−qz/2
z h−1

v h
−(q2+1)
η

)
+Op

(
n1/2h2

z(h
2
v + h2

η)
)
.

Proof:

E
(√

nS%̂δ̂

)2

=
1

n

n∑
i=1

E
(
%̂2
i δ̂

2
i

)
+

2

n

n∑
i=1

n∑
j=1,6=i

E
(
%̂iδ̂i%̂j δ̂j

)
,

where

E
(
%̂2
i δ̂

2
i

)
=

1

n6h2qz
z h4

vh
2(2q2+1)
η

E

∑
j 6=i

∑
l 6=i

%jLijδl

(
L

(1)
il

)∑
k 6=j

C(k,j;K) −
∑
k 6=i

C(k,i;K)


2

=
1

n6h2q2
z h4

vh
2(2q2+1)
η

E

∑
j 6=i

∑
l 6=i

%2
jL

2
ijδ

2
l

{
L

(1)
il

}2

∑
k 6=l

C(k,l;K) −
∑
k 6=i

C(k,i;K)


2


+
2

n6h2qz
z h4

vh
2(2q2+1)
η

E

∑
j 6=i

∑
l 6=i

%2
jL

2
ijδ

2
l

(
L

(1)
il

)2

∑
k 6=l

C(k,l;K) −
∑
k 6=i

C(k,i,;K)


×

 ∑
m 6=l,k

C(m,l;K) −
∑
m6=i,k

C(m,i;K)


 = O

(
n−2h−qzz h−2

v h−(2q2+2)
η

)
+O

(
n−2h4

zh
−2
v h(−2q2+2)

η

)
,

and the cross product term, E
(
%̂iδ̂i%̂j δ̂j

)
, is (n6h2qz

z h4
vh

2(2q2+1)
η )−1 times:

E

∑
j 6=i

∑
s6=j

∑
l 6=i

∑
t 6=j

%j%sLijLjsδlδtL
(1)
il L

(1)
jt

∑
k 6=l

C(k,l;K) −
∑
k 6=i

C(k,i;K)


∑
m6=t

C(m,t;K) −
∑
m6=j

C(m,j;K)


 .
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Hence the cross product term is O
(
h4
z(h

2
v + h2

η)2
)
.

�

Proposition 5.A.11.

(i)
√
nSm̃x−m̂x,δ̂X = Op

(
n−1h

−qz/2
z h−1

v h
−(q2+1)
η

)
+Op

(
n1/2h2

z(h
2
v + h2

η)2
)
;

(ii)
√
nSm̃x−m̂x,δ̂m = Op

(
n−1h

−qz/2
z h−1

v h
−(q2+1)
η

)
+Op

(
n1/2h2

z(h
2
v + h2

η)2
)
;

(iii)
√
nSm̃x−m̂x,δ̂e = Op

(
n−1h

−qz/2
z h−1

v h
−(q2+1)
η

)
+Op

(
n1/2h2

z(h
2
v + h2

η)2
)
;

(iv)
√
nSm̃−m̂,δ̂m = Op

(
n−1h

−qz/2
z h−1

v h
−(q2+1)
η

)
+Op

(
n1/2h2

z(h
2
v + h2

η)2
)
;

(v)
√
nSm̃−m̂,δ̂X = Op

(
n−1h

−qz/2
z h−1

v h
−(q2+1)
η

)
+Op

(
n1/2h2

z(h
2
v + h2

η)2
)
;

(vi)
√
nSm̃−m̂,δ̂e = Op

(
n−1h

−qz/2
z h−1

v h
−(q2+1)
η

)
+Op

(
n1/2h2

z(h
2
v + h2

η)2
)
.

Proof:

E
(√

nSϕ̃−ϕ̂,δ̂

)2

=
1

n

n∑
i=1

E
(

(ϕ̃i − ϕ̂i)2δ̂2
i

)
+

2

n

n∑
i=1

n∑
j=1,6=i

E
(

(ϕ̃i − ϕ̂i)δ̂i(ϕ̃j − ϕ̂j)δ̂j
)
,

where:

E
(

(ϕ̃i − ϕ̂i)2δ̂i

)2

=
1

n6h2qz
z h4

vh
2(2q2+1)
η

E

∑
j 6=i

(
C∗(i,j;L)

)2∑
l 6=j

δ2
l

(
L

(1)
il

)2

∑
k 6=l

C(k,l:K) −
∑
k 6=i

C(k,i;K)


2


+
2

n6h2qz
z h4

vh
2(2q2+1)
η

E

∑
j 6=i

(
C∗(i,j;L)

)2∑
l 6=j

δ2
l

(
L

(1)
il

)2

∑
k 6=l

C(k,l:K) −
∑
k 6=i

C(k,i;K)


×

 ∑
m 6=l,k

C(m,l:K) −
∑
m6=i,k

C(m,i;K)


 = O

(
n−2h−qzz h−2

v h−(2q2+2)
η

)
+O

(
n−2h4

zh
−2
v h−(2q2+2)

η

)
,

and the cross product term, E
(
%̂iδ̂i%̂j δ̂j

)
is (n6h2qz

z h2
vh

2(2q2+1)
η )−1 times:

E

∑
j 6=i

∑
ks 6=j

∑
l 6=i

∑
t 6=j

C∗(i,j;L)C
∗
(j,s;L)δlδtL

(1)
il L

(1)
jt

∑
k 6=l

C(l,k:K) −
∑
k 6=i

C(k,i;K)


∑
m 6=t

C(m,t:K) −
∑
m6=j

C(m,j;K)


 .

Hence the cross product term is O
(
h4
z(h

2
v + h2

η)4
)
. �

Proposition 5.A.12.
√
nSÛ ê = Op(nhvh

q2
η )−1 +Op(n

1/2(h2
v + h2

η)2).

Proof:

E
(√
nSÛ ê

)2
=

1

n

n∑
i=1

E
{
Û2
i ê

2
i

}
+

2

n

n∑
i=1

n∑
j=1,6=i

E
{
ÛiÛ

′
j êiêj

}
,
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where:

E
{
Û2
i ê

2
}

=
1

n4h4
vh

4q2
η

E

UjU ′j∑
j 6=i

L2
ije

2
l

∑
l 6=i

L2
il

 = O(n−2h−2
v h−2q2

η ),

and:

E
{
ÛiÛ

′
j êiêj

}
=

1

n4h4h4q2
η

E

UlU ′l∑
l 6=i

∑
l 6=j

LilLjle
2
l

∑
k 6=i

∑
k 6=j

LikLjk

 = O((h2
v + h2

η)4).

�

Proposition 5.A.13.

(i)
√
nSmx−m̃x,m̃x−m̂x = Op

(
n−1h

−1/2
v h

−q2/2
η

)
;

(ii)
√
nSm−m̃,m̃−m̂ = Op

(
n−1h

−1/2
v h

−q2/2
η

)
;

(iii)
√
nSmx−m̃x,m̃−m̂ = Op

(
n−1h

−1/2
v h

−q2/2
η

)
;

(iv)
√
nSm−m̃,m̃x−m̂x = Op

(
n−1h

−1/2
v h

−q2/2
η

)
.

Proof: By (5.A.2) and (5.A.3) we deduce that, uniformly in i, we have:

ϕi − ϕ̃i = U ′i(α0 − α)ϕ
(1)
0 (X ′iα0, ηi) +O(n−1). (5.A.13)

Hence we have:

(ϕi − ϕ̃i)(ϕ̃i − ϕ̂i) =
1

nhvh
q2
η

∑
j 6=i

ti

{
ϕ̃i − ϕ̃j + U ′j(α− α0)ϕ

(1)
0

}
Lij ,

where ti = U ′i(α0 − α)ϕ
(1)
0 .

For the rest of proofs, we use similar arguments to those in Proposition 5.A.7 because E(Ui|L) = 0.

Hence we have:

E
(√
nSϕ−ϕ̃,ϕ̃−ϕ̂

)2
=

1

n

n∑
i=1

E
(
t2i (ϕ̃i − ϕ̂i)2

)
,

where:

E
(
t2i (ϕ̃i − ϕ̂i)2

)
=

1

n2h2
vh

2
η

E

∑
j 6=i

t2i

(
C∗(i,j;L)

)2

L2
ij

+
2

n2h2
vh

2
η

E

∑
j 6=i

∑
l 6=i,j

t2iC
∗
(i,j;L)LijC

∗
(i,l;L)Lil


= O

(
n−2h−1

v h−q2η

)
+O

(
n−1(h2

v + h2
η)2
)
.

�

Proposition 5.A.14.

(i)
√
nSmx−m̃x,Û = Op

(
n−1h

−1/2
v h

−q2/2
η

)
;

(ii)
√
nSmx−m̃x,ê = Op

(
n−1h

−1/2
v h

−q2/2
η

)
;

(iii)
√
nSm−m̃,Û = Op

(
n−1h

−1/2
v h

−q2/2
η

)
;
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(iv)
√
nSm−m̃,ê = Op

(
n−1h

−1/2
v h

−q2/2
η

)
.

Proof: By (5.A.13) and E(%i|L) = 0, we use similar arguments to those in Proposition 5.A.6 for the

rest of the proofs.

E(
√
nSϕ−ϕ̃,%̂)

2 =
1

n

n∑
i=1

E
(
t2i %̂

2
i

)
,

where:

E
(
t2i %̂

2
i

)
=

1

n2h2
vh

2q2
η

E

∑
j 6=i

t2i %
2
jL

2
ij

 = O
(
n−2h−1

v h−q2η

)
.

�

Proposition 5.A.15.

(i)
√
nSmx−m̃x,δ̂X = Op

(
n−2h

−qz/2
z h

−1/2
v h

−(q2+2)/2
η

)
;

(ii)
√
nSm−m̃,δ̂m = Op

(
n−2h

−qz/2
z h

−1/2
v h

−(q2+2)/2
η

)
;

(iii)
√
nSm−m̃,δ̂X = Op

(
n−2h

−qz/2
z h

−1/2
v h

−(q2+2)/2
η

)
;

(iv)
√
nSmx−m̃x,δ̂m = Op

(
n−2h

−qz/2
z h

−1/2
v h

−(q2+2)/2
η

)
;

(v)
√
nSmx−m̃x,δ̂e = Op

(
n−2h

−qz/2
z h

−1/2
v h

−(q2+2)/2
η

)
;

(vi)
√
nSm−m̃,δ̂e = Op

(
n−2h

−qz/2
z h

−1/2
v h

−(q2+2)/2
η

)
.

Proof: By (5.A.13) and E(Ui|L) = 0, the rest of proofs is similar to that of Proposition 5.A.8.

E(
√
nSϕ−ϕ̃,δ̂)

2 =
1

n

n∑
i=1

E
(
t2i δ̂

2
i

)
,

where

E
(
t2i δ̂

2
i

)
=

1

n6h2qz
z h2

vh
2(q2+1)
η

E

∑
j 6=i

t2i δ
2
j

{
L

(1)
ij

}2

∑
l 6=j

C(l,j;K) −
∑
l 6=i

C(l,i;K)


2


+
2

n6h2qz
z h2

vh
2(q2+1)
η

E

∑
j 6=i

t2i δ
2
j

(
L

(1)
ij

)2

∑
l 6=j

C(l,j;K) −
∑
l 6=i

C(l,i;K)


×

∑
k 6=j,l

C(k,j;K) −
∑
k 6=i,l

C(k,i;K)


 = O(n−4h−qzz h−1

v h−(q2+2)
η ) +O(n−4h4

zh
−1
v h−(q2+2)

η ).

�

5.2. Proof of Theorem 2.2

Given β̂ and α̂, we have:

m̂(v̂, η̂i)−m(v0, ηi) =
{
m̂y∗∗(v̂, ηi)− m̃y∗∗(v̂, ηi) + m̃y∗∗(v̂, ηi)−my∗∗(v0, ηi) + δ̆y∗∗,i

}
−

{
m̂x(v̂, ηi)− m̃x(v̂, ηi) + m̃x(v̂, ηi)−mx(v0, ηi) + δ̆x,i

}′
(β̂ − β0), (5.B.1)
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where Y ∗∗i = Yi −X ′iβ0, δ̆y∗∗ = δ̆y − δ̆′xβ0 and m̃(v̂, η) = E(m|α̂). As the results of Section 5.1, the second

term in the right-hand side of (5.B.1) is op(n
−1/2), uniformly in i, by applying (5.A.10) and (5.A.11) as

sup
Xi,ηi∈A,Zi∈Az

|ϕi| = op(n
a) since sup

Xi,ηi∈A,Zi∈Az
E|ϕi/nb|2l = O(1). Hence (5.B.1) is:

m̂(v̂, η̂i)−m(v0, ηi) =
{
m̂y∗∗(v̂, ηi)− m̃y∗∗(v̂, ηi) + m̃y∗∗(v̂, ηi)−my∗∗(v0, ηi) + δ̆y∗∗,i

}
+ op(1), (5.B.2)

where δ̆y∗∗ = op(n
−1/2) by similar arguments to those in Proposition 5.A.4 and m̃y∗∗(v̂, ηi)−my∗∗(v0, ηi) =

Op(n
−1/2) by (5.A.2) and (5.A.3), uniformly in i. Hence (5.B.2) is:

m̂(v̂, η̂i)−m(v0, ηi) = m̂y∗∗(v̂, ηi)− m̃y∗∗(v̂, ηi) + op(1)

≡ m̂(v̂, ηi)− m̃(v̂, ηi) + op(1), (5.B.3)

where:

m̂(v̂, ηi)− m̃(v̂, ηi) =

∑
j 6=i {m(v0, ηj)− m̃(v̂, ηi)}L1,ij∑

j 6=i L1,ij

=

∑
j 6=i {m(v0, ηj)−m(v0, ηi)}L1,ij∑

j 6=i L1,ij
+ U ′i(α̂− α0)m

(1)
0 +O(n−1)

=

∑
j 6=i {m(v0, ηj)−m(v0, ηi)}

{
L0,ij +O(n−1/2h−1

v )
}∑

j 6=i L0,ij + o(1)
+Op(n

−1/2).

Hence (5.B.3) is:

m̂(v̂, η̂i)−m(v0, ηi) = m̂(v0, ηi)−m(v0, ηi) + op(1). (5.B.4)

Let us define m̌(v0, ηi) = m̂(v0, ηi)f̂(v0, ηi). Then we can rewrite the term in the right-hand side of

(5.B.4) as follows:

m̂(v0, ηi)−m(v0, ηi) =
m̌(v0, ηi)−m(v0, ηi)f̂(v0, ηi)

f̂(v0, ηi)

=
m̌(v0, ηi)−m(v0, ηi)f̂(v0, ηi)

f(v0, ηi)

[
1− f̂(v0, ηi)− f(v0, ηi)

f(v0, ηi)

]
. (5.B.5)

First, we consider the bias term E(m̂(v0, ηi)−m(v0, ηi)) = f−1(v0, ηi)
(
Em̌(v0, ηi)−m(v0, ηi)E(f̂(v0, ηi))

)
,

where

Em̌(v0, ηi) = E

 1

nhvh
q2
η

n∑
j=1

Kv

(
V0,j − v0

hv

)
Kη

(
ηj − ηi
hη

)
Y ∗∗j


= E

Ev0,ηi
 1

nhvh
q2
η

n∑
j=1

Kv

(
V0,j − v0

hv

)
Kη

(
ηj − ηi
hη

)
Y ∗∗j




= E

 1

nhvh
q2
η

n∑
j=1

Kv

(
V0,j − v0

hv

)
Kη

(
ηj − ηi
hη

)
m(V0,j , ηj)


= f(v0, ηi)m(v0, ηi) +Kv,2h2

v

{
f (1)
v (v0, ηi)m

(1)
0 (v0) + f(v0, ηi)m

(2)
0 (v0)

}
+ Kη,2

q2∑
s=1

h2
η,s

{
f (1)
η,s (v0, ηi)m

(1)(ηs,i) + f(v0, ηi)m
(2)
η,s(ηi)

}
+O(h3

v) +O

(∑
s

h3
η,s

)
.
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In the expression above, Ev0,ηi is the expectation conditional on v0 and ηi. Hence

E(m̂(v0, ηi)−m(v0, ηi)) =

{
h2
vBv(v0, ηi) +

q2∑
s=1

h2
η,sBη,s(v0, ηi)

}
+ o(1). (5.B.6)

The single sum of (5.B.6) converges to its population mean by the Chebyshev’s law of large numbers (see

Linton and Härdle (1996)).

Now let us consider the variance term. Note that f(v0, ηi) = f(v0, η) + Op(n
1/2) and m(v0, ηi) =

m(v0, η)+Op(n
−1/2) by the law of large numbers since both functions satisfy the bounded moment conditions.

Hence we have:

V

(
1

n

n∑
i=1

m̂(v0, ηi)

)
= f(v, η)−2V

(
1

n

n∑
i=1

{
m̌(v0, ηi)−m(v0, ηi)f̂(v0, ηi)

})

= f(v0, η)−2V

(
1

n

n∑
i=1

m̌(v0, ηi)

)
+ f(v0, η)−2m(v0, η)2V

(
1

n

n∑
i=1

f̂(v0, ηi)

)

− f(v0, η)−22m(v0, η)Cov

(
1

n

n∑
i=1

m̌(v0, ηi),
1

n

n∑
i=1

f̂(v0, η)

)
,

where V (·) and Cov(·) denote variance and covariance, respectively, and:

V

(
1

n

n∑
i=1

m̌(v0, ηi)

)
= E

(
Vv0,ηi

{
1

n

n∑
i=1

m̌(v0, ηi)

})
+ V

(
Ev0,ηi

{
1

n

n∑
i=1

m̌(v0, ηi)

})

= σ2f(η)2E

 1

nhqv

n∑
j=1

Kv

(
Vj,0 − v0

hv

)2

+ f(η)2V

 1

nhqv

n∑
j=1

Kv

(
V0,j − v0

hv

)
m(V0,j , ηj)


=

σ2f(η)2

nhqv
Kv +

m(v0, η)2f(η)2f(v0)

nhqv
Kv +O(n−1),

V

(
1

n

n∑
i=1

f̂(v0, ηi)

)
=
f(η)2f(v)Kv

nhqv
+O(n−1)

Cov

(
1

n

n∑
i=1

m̌(v0, ηi),
1

n

n∑
i=1

f̂(v0, ηi)

)
= E

{
1

n

n∑
i=1

m̌(v0, ηi)
1

n

n∑
i=1

f̂(v0, ηi)

}

− E

{
1

n

n∑
i=1

m̌(v0, ηi)

}
E

{
1

n

n∑
i=1

f̂(v0, ηi)

}
=
m(v0, η)f(η)2f(v)Kv

nhqv
+O(n−1),

where Vv0,ηi denotes the variance conditional on v0 and ηi. Hence we have:√
nhqv(m̂(v̂)−m(v0)− bias)→D N(0, var).

The consistency of ĝ(v̂) and its asymptotic normality are argued in the same way as above, since m(v0) =

g(v0) + c1. �
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