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Abstract 

In the absence of uniformly most powerful (UMP) tests or uniformly most powerful 

invariant (UMPI) tests, King (1987c) suggested the use of Point Optimal (PO) tests, 

which are most powerful at a chosen point under the alternative hypothesis. This 

paper surveys the literature and major developments on point optimal testing since 

1987 and suggests some areas for future research. Topics include tests for which all 

nuisance parameters have been eliminated and dealing with nuisance parameters via 

(i) a weighted average of p  values, (ii) approximate point optimal tests, (iii) 

plugging in estimated parameter values, (iv) using asymptotics and (v) integration. 

Progress on using point-optimal testing principles for two-sided testing and multi-

dimensional alternatives is also reviewed. The paper concludes with thoughts on 

how best to deal with nuisance parameters under both the null and alternative 

hypotheses, as well as the development of a new class of point optimal tests for 

multi-dimensional testing.  

JEL: C12; C50 

Keywords: Local to unity asymptotics, Neyman-Pearson lemma, nuisance 

parameters, power envelope, unit root testing. 

 

 

1The authors are most grateful for constructive suggestions from Graham Elliott, 

Jiti Gao and David Harris that have helped improve the paper.
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1 Introduction 

Constructing hypothesis tests or choosing which test to use in econometrics can be 

difficult.  Sometimes we are lucky and have lots of data observations at our 

disposal so the choice of test statistic may not be particularly crucial. On the other 

hand, too often the sample size is relatively small and then we want to use an 

accurate and powerful test.  Because our data does not typically come from a 

controlled experiment but rather from our best efforts of observing a complicated 

economy, hypothesis testing has an enhanced role to play in our quest to model 

selected elements of an economy.   

 

Hypotheses under test can be classified into two types; simple and composite. A 

simple hypothesis is one in which the observed data comes from a sole 

distribution with all parameters known.  A composite hypothesis is made up of 

more than one distribution, typically involving parameters that can take a range of 

values.  The main result that helps us construct powerful tests is the Neyman-

Pearson lemma (see Lehmann and Romano, 2005, p. 60). It states that the most 

powerful (MP) test of a simple null hypothesis (0H ) against a simple alternative 

hypothesis ( 1H ) is based on rejecting 0H  for large values of the ratio of the 1H  

density to the 0H  density.  Unfortunately it is very rare that we test a simple null 

against a simple alternative. 

 

When one moves to testing a simple null against a composite alternative (1cH ) 

then it can be less clear how to proceed.  A useful concept for understanding the 

options is the power envelope.  For a given level of significance (say 5%), it can 

be traced out by calculating the power of the MP test of 0H  against each 

distribution under 1cH . If the distributions under 1cH  can be indexed by a 

parameter vector, γ , then the power envelope will be a function of γ .  No test can 

have power above the power envelope. The best outcome is if there exists a test 

whose power is equal to the power envelope.  This is a uniformly most powerful 

(UMP) test. A second best is to find a test whose power is very close to the power 

envelope.  We might call such a test an approximately UMP test.   
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In the absence of a UMP test, Cox and Hinkley (1974, p.102) considered three 

alternative approaches.  The first of these is the point optimal test which involves 

the MP test of 0H  against the simple hypothesis constructed by choosing γ  to be 

“somewhat arbitrarily a ‘typical’ point”, say γ  = 1γ .  As a test of 0H  against 1cH , 

it is MP at γ  = 1γ , or alternatively, its power curve kisses the power envelope at 

γ  = 1γ .  If unknowingly a UMP test does exist, then this test will be UMP. A 

variation on the point optimal test is Davies’ (1969) beta optimal test which 

maximizes power (beta) at a chosen level, say 0.5 or 0.8. Another is Schaafsma 

and Smid’s (1966) most stringent somewhere most powerful test which chooses 

the point at which power is optimized to minimize the maximum difference 

between the test’s power and the power envelope.  

 

The second option is to remove any arbitrariness by constructing the test which is 

the limit of the point optimal tests as the chosen point moves towards the 0H  

value.  When γ  is a scalar, this is known as a locally best (or locally MP) test.  Its 

power curve has the steepest slope of all tests as one moves away from 0H  (see 

Ferguson (1967, p.235) and King and Hillier (1985)).  If γ  is a vector or its 0H  

value is inside the range of γ  values (i.e., the two-side case), then the test most 

likely will differ depending on the direction taken in γ  space when forming the 

limit.  If the test is invariant to the direction taken, then we have a uniformly 

locally best test with a power curve with steepest slope in all directions away from 

the null (for an example, see King (1987b) and King and Evans (1988)). An 

alternative solution, when there is no uniformly locally best test, is to construct 

the test whose power curve slope averaged over all directions in the γ  space is 

maximized.  This is known as a locally most mean powerful (LMMP) test (see 

Sen Gupta and Vermeire (1986) and King and Wu (1997)). 

 

The third approach discussed by Cox and Hinkley (1974) is to choose a test which 

maximizes some weighted average of power.  The LMMP test is a particular 

example of this approach and Andrews and Ploberger (1994) provide another 

prominent econometric example.  In general, the test which maximizes a weighted 

average of power can be constructed using a special case of the generalized 
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Neyman-Pearson lemma (GNPL) (see Lehmann and Romano, 2005, p.77 and 

Begum and King, 2005a).  Essentially 1cH  is replaced by a weighted average of 

the densities to make a simple alternative and the test is the MP test of 0H  against 

this new alternative. It is worth noting that a point optimal test can be viewed as a 

test which maximizes weighted average power; this case being where all the 

weight is put on the point at which power is optimized. 

 

Things become even more complicated as we move to testing a composite null  

( 0cH ) against either a simple (1H ) or a composite ( 1cH ) alternative.  The GNPL 

does provide some options in some rather special cases. If 0cH  is made up of a 

finite number of completely determined densities and we are testing against a 

simple alternative, the GNPL provides the most powerful test if such a test exists.  

If the alternative is composite, then clearly it can also provide the point optimal 

solution or the maximized weighted power solution. In the more standard case of 

a composite null hypothesis with a density indexed by an unknown parameter 

vector, the GNPL can provide the most powerful test against a simple alternative 

(if such a test exists) but with the twist that average size is controlled over a 

countable number of subsets of the null parameter space.  For a concise summary 

of the range of optimality properties that have been considered in the literature, 

see Sen Gupta (1991). 

 

Based on a range of early applications largely involving testing the covariance 

matrix of the linear regression model (see Spjotvoll (1967), Davies (1969), 

Berenblut and Webb (1973), Fraser, Guttman and Styan (1976), Bhargava, 

Franzini and Narendranathan (1982), King (1981b, 1983a, 1983b, 1984, 1985a, 

1985b, 1986,  1987a), Franzini and Harvey (1983), Sargan and Bhargava (1983), 

Evans and King (1985a, 1985b, 1988), King and Smith (1986), Shively (1986, 

1988a, 1988b), Nyblom (1986) and Dufour and King (1991)),  King (1987c) 

argued the case for the use of point optimal testing.  He observed they best suit 

problems in which the parameter space under the alternative hypothesis can be 

restricted in scope by theoretical and technical (such as variances being positive) 

considerations.  They work well when the null hypothesis can be reduced to a 

simple hypothesis by invariance (see, King 1980, 1987b) or similarity arguments 
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(see Hillier, 1987).  They also allow one to trace out the maximum attainable 

power represented by the power envelope for a given testing problem.  

 

It is important to note that the choice of a point optimal test does not mean that we 

believe the point at which power is optimized fully defines the alternative 

hypothesis. Rather, it is a choice of a particular test with a power curve that kisses 

the power envelope at the chosen point.   

 

The aim of this paper is to update the review given in King (1987c) and outline 

the literature and its findings since 1987.  There is a particular emphasis on how 

point optimal tests might be applied in cases where there are nuisance parameters 

that cannot be eliminated through invariance or similarity arguments. The paper 

also aims to make some further suggestions on solutions for problems that are less 

favourable to point optimal tests such as multivariate testing and the presence of 

nuisance parameters.   

 

The plan of the paper is as follows.  Section 2 reviews the literature since 1987 on 

point optimal testing where all nuisance parameters have been eliminated, 

typically through invariance arguments. Section 3 categorizes the various 

approaches to dealing with nuisance parameters including via (i) weighted 

averages of p  values, (ii) approximate point optimal tests, (iii) plugging in 

estimated values, (iv) using asymptotics and (v) integrating out the nuisance 

parameters.  Progress on using point optimal testing principles for two-sided and 

multi-dimensional alternatives is reviewed in Section 4.  We give our thoughts in 

Section 5 on how best to deal with nuisance parameters under both the null and 

alternative hypotheses as well as presenting a new class of point optimal tests for 

multivariate testing.  Finally, some concluding remarks are made in Section 6.  

 

2 Tests where all nuisance parameters have been eliminated 

In this section, we update King’s (1987c) review of tests for problems in which all 

nuisance parameters have been able to be eliminated, typically through invariance 

arguments.  A nice introduction to point optimal invariant testing in the linear 

regression model is given by Shively (2006).  Work on improving the speed and 
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accuracy of numerical algorithms for calculating the p  values (and critical 

values) of these and related tests have been reported by Shively, Ansley and Kohn 

(1990) and Ansley, Kohn and Shively (1992).  They (Shively, Kohn and Ansley, 

1994) also constructed a point optimal invariant test for nonlinearity in a semi-

parametric regression model.  

 

Since 1987, point optimal invariant tests have been proposed for a wide range of 

testing problems involving the covariance matrix in the linear regression model.  

These include (i) testing for autocorrelation in the presence of missing 

observations (Shively, 1993), (ii) testing for first order autoregressive (AR(1)) 

disturbances when the data is made up of the aggregate of a large number of small 

samples (Bhatti, 1992), (iii) testing for spatial autocorrelation in the disturbances 

(Martellosio, 2010, 2012), (iv) testing for block effects caused by random 

coefficients (Bhatti and Barry, 1995), (v) testing for quarter-dependent simple 

fourth-order autoregressive (AR(4)) disturbances (Wu and King, 1996), (vi) 

testing for joint AR(1)-AR(4) disturbances against joint MA(1)-MA(4) 

disturbances (Silvapulle and King, 1993) and (vii) testing for the presence of a 

particular error component (El-Bassiouni and Charif, 2004).  Hwang and Schmidt 

(1996) extended the work of Dufour and King (1991) on testing the 

autocorrelation coefficient for stationary and nonstationary AR(1) disturbances 

while Dufour and Neifar (2008) extended it to the case of second order 

autoregressive (AR(2)) disturbances. Shively (2001) constructed a point optimal 

invariant unit root test of a random-walk-with-drift null hypothesis against a 

trend-stationary AR(1) alternative. This test is close to one of Dufour and King’s 

(1991) tests, the main difference being the treatment of the initial observation. 

Nakatsuma et al. (2000) also derived a point optimal invariant test for a unit root 

in linear regression disturbances when the model is in first-differenced form.  

Honda (1989) showed that the class of these point optimal invariant tests is 

identical to the class of point optimal similar tests.  This can also be concluded 

from Hillier’s (1987) discussion of similar tests.  Small (1993) observed that point 

optimal invariant tests for AR(1) disturbances in the linear regression can have 

their power tend to zero or a fraction between zero and one as the autocorrelation 

coefficient tends to one. This property, that is shared by the Durbin-Watson and 
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alternative Durbin-Watson tests (King, 1981a), confirms that the power envelope 

can have these properties.   

 

Shively (1988a) devised a point optimal test for constant regression coefficients 

against Rosenberg’s (1973) return to normalcy random coefficient model in the 

linear regression model.  A modification to this test was suggested by Brooks 

(1993) who (Brooks, 1995) also investigated its robustness to Hildreth-Houck 

(1968) random coefficients and non-normality.  Brooks (1997) studied its use, 

along with Brooks and King’s (1994) APOI test, in a sequence of point optimal 

tests to select a varying coefficient model.  Kurozumi (2003) derived the 

asymptotic distribution of a point optimal invariant test for a random walk 

regression coefficient in the linear regression model. 

 

Point optimal tests (called beta-optimal tests after Davies, 1969) of the 

equicorrelation coefficient of a standard symmetric multivariate normal 

distribution was found to be approximately UMP by Bhatti and King (1990).  This 

led to a series of papers involving point optimal testing in related settings 

including that of the linear regression model by Wu and Bhatti (1994) and Bhatti 

(1995, 2000). The problem of testing the value of the location parameter of a 

Cauchy density based on a single observation was investigated by Atiq-ur-

Rehman and Zaman (2008) who constructed the class of point optimal tests for 

this problem. Davies (2001) considered testing for a unit root in an AR(1) process 

and also testing the stationary hypothesis against the integrated process in this 

setting.  He observed that a time series made up of a Brownian motion sampled at 

equal time intervals plus white noise is exactly orthogonalized by the discrete 

cosine transformation-II and used this to construct beta-optimal tests. 

 

3 Dealing with nuisance parameters when constructing point optimal tests 

3.1 Weighted average of p  values 

An approach for dealing with unknown nuisance parameters when constructing 

locally best or point optimal tests that has clear potential and is worthy of further 

examination was suggested by King (1996). He proposed calculating p  values 

conditional on the value of the nuisance parameters and then taking a weighted 
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average of these p  values using either an appropriate marginal likelihood or the 

posterior density function of the nuisance parameters under the null hypothesis. 

The philosophy behind this approach is that there is information in the data about 

what nuisance parameter values are more likely than others, and this information 

should be utilized in the test procedure. 

 

If we assume that the nuisance parameter values are known, then we can construct 

a point optimal test and, using Monte Carlo methods if needed, calculate the p

value for this test. Then these p  values, conditional on nuisance parameter 

values, can be averaged over the marginal likelihood or posterior density function 

of the nuisance parameters, typically using Monte Carlo integration.  If Monte 

Carlo Markov chain methods are used to generate drawings from the marginal 

likelihood or posterior density of the nuisance parameters under the null 

hypothesis, then the procedure can be implemented as follows. After an 

appropriate burn-in period, for each drawing of the nuisance parameter vector, 

calculate the p  value of the test conditional on that value.  Following a large 

number of drawings (say 2,000), take as the p  value of the test, the average of the 

calculated conditional p  values. 

 

King (1996) investigated the small sample properties of this approach for testing 

linear regression coefficients in the presence of AR(1) disturbances.  The test used 

is the UMP invariant t  test conditional on the value of the autoregressive 

parameter.  This test, therefore, could be regarded as a point optimal test.  King’s 

approach was shown to be typically more accurate than the OLS based t  test, the 

Durbin (1960) procedure outlined by King and Giles (1984), the standard 

maximum likelihood test and the t  test based on Wooldridge’s (1989) standard 

errors that are robust to serial correlation and hetroskedasticity.   

 

3.2 Approximate Point Optimal Tests 

The general testing problem considered by King (1987c) is one of testing  

0H : x  has density ( )f x δ  (1) 

against 
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 aH : x  has density ( ) ,f x θ  (2) 

 

where x  is the observed sample, δ  is a 1w×  vector of parameters restricted to 

the set ∆  and θ  is a 1q ×  vector of parameters restricted to the set Θ . Any 

knowledge of the possible range of parameter values has been used to keep the 

parameter sets ∆  and Θ  as small as possible. 

 

A point optimal test in this context involves choosing a value of θ , say 1θ , at 

which power is to be optimized.  A general, but not very explicit approach to 

constructing a point optimal test in this setting is discussed by Lehmann and 

Romano (2005, p 83-4) in the context of testing a composite null hypothesis 

against a simple hypothesis, in our case *
aH : x  has density ( )1f x θ .  It involves 

finding a probability density function over the ∆  space, ( )h δ∆ , constructing 

( )f x∆  = ( ) ( )f x h dδ δ δ∆∆∫   

and 

1( )s θ  = 1( )
.

( )

f x

f x

θ

∆  

 

It also requires that a critical value c  exists such that 

 

( ) ( )1Pr ~s c x f xθ δ >  ≤  α ,  for all δ ∈ ∆ ,  (3) 

 

 holds, where α  is the desired level of significance and  

 

 1Pr ( ) ~ ( ) .s c x f xθ α∆ >  =   

 

These requirements may not always be able to be met, in which case it is doubtful 

that a point optimal test can be found, at least by this approach.  Lehmann and 

Romano (2005) give two examples in which ( )h δ∆  has all its mass at a single 

point and one in which ( )h δ∆  has mass at two points. 
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Determining what ( )h δ∆  might be in a given application is not an easy task.  They 

give the following suggestion which does provide some guidance.  We should be 

looking for the ( )h δ∆  which is of the least help in determining if *aH  is true.  In 

other words, we should look for the ( )h δ∆  that provides the lowest power at 

1(f x θ ) of the most powerful tests based on 1( ).s θ  If such a distribution can be 

found, then if (3) also holds, we have a point optimal test and ( )h δ∆  is called the 

least favourable distribution. 

 

King (1987c) conjectured that such a test could be constructed if one could find a 

point 1δ ∈ ∆  and the critical value c  such that  

1 1( , )s δ θ  = 1

1

( )

( )

f x
c

f x

θ
δ

>   (4)
 

 

is the most powerful test of the simple null 

 

*
0H : x  has density 1( )f x δ  

 

against the simple alternative *aH , 

 

( ) ( )1 1 1Pr , ~s c x f xδ θ δ α > =    

 

and (3) holds with 1( )s θ  = 1 1( , )s δ θ . This provides an operational approach to 

constructing Lehmann and Romano’s test in which ( )h δ∆  has all its mass at a 

single point. For situations where appropriate values of 1δ  and c  cannot be found, 

King (1987c) suggested an APO test which is based on (4) but requires 1δ  to be 

chosen such that (3) holds with ( )1s θ  = 1 1( , )s δ θ  and   

 

( ) ( )1 1 1Pr , ~s c x f xα δ θ δ − >   (5) 
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is minimized.  

 

King (1989) constructed an APO invariant (APOI) test for simple AR(4) 

regression disturbances in the presence of AR(1) disturbances.  For this problem, 

invariance arguments were used to remove most of the nuisance parameters so 

that δ  = 1ρ  where 1ρ  is the AR(1) parameter and θ  = ( )1 4,ρ ρ ′  where 4ρ  is the 

simple AR(4) parameter.  Note that 1ρ  is a nuisance parameter that cannot be 

eliminated, but its presence can be used to advantage.  King’s (1989) empirical 

power comparison of different APOI tests showed that it is important to have 

sensible rules for choosing 1θ  = ( )11 41,ρ ρ ′  with a view to using the choice of 11ρ  

to help minimize (5) and therefore improve the optimality of the test.  He 

acknowledged that the test required a lot of computation to apply.   

 

Silvapulle and King (1991) investigated the APOI test of first order moving 

average (MA(1)) disturbances against AR(1) disturbances in the linear regression 

model.  They conducted an empirical size and power comparison of their APOI 

test with an asymptotic test of the second-order autocorrelation coefficient of the 

disturbances (which is zero under the null and non-zero under the alternative) and 

a Lagrange multiplier (LM) test.  The study led to the conclusion that their APOI 

test has superior small-sample size and power properties compared to the other 

two asymptotic tests they considered. 

 

The problem of testing Hildreth-Houck (1968) against Rosenberg’s (1973) return 

to normalcy random coefficients in the linear regression model was investigated 

by Brooks and King (1994). They were unable to construct a point optimal test, so 

considered the class of APOI tests. They found these tests to have good small-

sample properties compared to the likelihood ratio and Wald tests in a limited 

empirical power comparison. 

 

Rahman and King (1994) considered APOI tests for testing for random regression 

coefficients in the presence of autocorrelation in the regression disturbances.  

They compared the small sample properties of these tests with those of the LM 
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and LMMP tests based on the marginal likelihood.  These latter tests were found 

to work well in this context and they concluded that “the extra work required to 

apply APOI tests hardly seems worthwhile, particularly for larger sample sizes”. 

An extension of this power comparison to non-normality may be found in King 

and Rahman (2015). 

 

Silvapulle (1994) constructed the APOI test for AR(1) disturbances against the 

alternative of IMA(1,1) disturbances in the linear regression model. She compared 

the small sample properties of the APOI test with a test suggested by Godfrey and 

Tremayne (1988) and the LM test.  She found for positively correlated errors, the 

APOI test performs best while for negatively correlated errors and larger sample 

sizes the LM test is best. 

 

Overall, the literature on APO testing suggests its use does involve a lot of 

computation for not much extra reward.  Also, the use of an APO test does not 

always guarantee the best test in terms of power.  These sorts of conclusions have 

led to the search for other solutions.   

 

3.3 Alternative approaches to approximate point optimal tests    

Using the GNPL, Sriananthakumar and King (2006) introduced another version of 

the APO test of a composite null (henceforth referred to as the g  test). They 

found the g  test has good size and power properties for the same testing problems 

considered by Silvapulle and King (1991) and Silvapulle (1994). Its construction 

involves deciding on appropriate representative points under the null hypothesis 

via a trial and error process and controlling multiple critical values as explained 

below. 

 

In order to construct a point optimal test for testing (1) against (2), let us assume 

that 1θ  ∈ Θ  is the point under the alternative hypothesis at which we wish to 

optimize power. Thus, the testing problem given in (1) and (2) can now be written 

as testing (1) against *aH . 
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We then need to approximate ( )f x δ , by a finite number of densities. Regard 

these as representative densities of ( )f x δ , δ ∈ ∆ .   

 

The g  test is the test with the minimum number of representative densities under 

the approximating null that allows the size to be sufficiently controlled over the 

complete null hypothesis parameter space. In the limited case of w  = 1 (i.e., δ  is 

a scalar) and ∆  being a closed interval, experience is that at least three 

representative densities are needed for the approximating null. Therefore, to 

construct the g  test, we start with three representative densities denoted 

 ( )1 1f x δ , ( )2 2f x δ  and ( )3 3f x δ  and find 1k , 2k  and 3k  values such that the 

following size conditions (which are evaluated via the Monte Carlo method) hold 

simultaneously: 

 

( ) ( ) ( )
3

1
1

Pr ~i i i j j
i

f x k f x x f xθ δ δ
=

 > 
 

∑ = α ,   j  = 1, …,3.  (6) 

 

In the case of w  = 1 and ∆  being a closed interval, 1δ  and 3δ  can be the two end 

points of ∆ , and 2δ  can be any point in between. If three representative densities 

are not adequate to control the sizes of the test, the number of representative 

densities under the null can be increased by one and the process repeated. The 

critical values ik , i  = 1, 2, 3 can be obtained using one of two methods: either a 

systematic iterative procedure or via Simulated Annealing (SA)1 

(Sriananthakumar and King, 2006). The g  test can be computationally intensive, 

particularly for high dimensional testing problems.  In addition, Sriananthakumar 

(2013) showed that the g  test may not be trustable in the presence of unavoidable 

nuisance parameters.  In particular, Sriananthakumar (2013) investigated the 

problem of testing  for a linear regression model with AR(1) errors against a first-

order dynamic linear regression model with white noise errors using marginal 

likelihood based g  tests and marginal likelihood based classical (LR, LM and W) 

tests. She showed that for this testing problem the g  tests have good power 

                                                
1 See Goffe et al. (1994) for more details about SA. 
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properties, particularly in the neighborhood of the chosen parameter point under 

the alternative hypothesis where power is optimized.  However, when moving 

further away from this parameter point, the power of the g  test becomes less 

desirable. 

 

Begum and King (2005a) introduced a Most Mean Powerful (MMP) test of a 

composite null based on the GNPL.  Their test maximizes average power subject 

to controlling average size over different subsets of the null hypothesis parameter 

space. The standard approach of controlling the maximum size over the nuisance 

parameter space is typically difficult and time consuming.  Begum and King’s 

approach of controlling average size over sub-regions selected to reduce 

variability in size seems to be a novel idea. In the context of testing for MA(1) 

errors against AR(1) errors in the linear regression model, their approach is shown 

to work well. This testing problem, after reduction through invariance arguments, 

becomes one dimensional. Even for this case, the MMP invariant test can be 

computationally intensive.  Begum and King (2005b) successfully applied the 

MMP test to testing higher order regression disturbances, namely joint MA(1)-

MA(4) against joint AR(1)-AR(4). They note that the increase in dimension does 

increase significantly the computational effort required to apply the test. They also 

(Begum and King (2006)) considered the problem of testing for heteroscedastic 

disturbances in the linear regression model which involves nuisance parameter 

space which in a one-sided infinite interval.  Their test was found to have 

encouraging small-sample size and power properties. 

  

3.4 An estimated parameter approach 

The problem of testing for AR(1) disturbances in the linear regression model with 

lagged dependent variables was considered by Inder (1990). He proposed 

replacing the coefficients of the lagged dependent variables with estimates and 

then applying King’s (1985a) point optimal test for AR(1) disturbances using 

small-disturbance asymptotic critical values.  Inder (1990) reported Monte Carlo 

results showing the new test has superior small-sample powers compared to 

existing tests.  A modification to his choice of critical values was suggested by 

King and Harris (1995) based on earlier work by King and Wu (1991).  
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The problem of testing for moving average unit roots in autoregressive integrated 

moving average (ARIMA) models was considered by Saikkonen and Luukonen 

(1993a, 1993b).  They constructed point optimal tests and, in their more general 

case, used estimated values of nuisance parameters in their test statistic.  They 

then derived the asymptotic distribution of their test statistic to allow asymptotic 

critical values to be obtained.   

 

Their work (and also that of Shively, 1988b) was extended by Hwang and 

Schmidt (1993) to the case where the null model contains a linear trend and so is 

trend stationary.  Hwang and Schmidt provide critical values and small-sample 

power for their point optimal invariant tests.  Shively (2004) constructed an 

approximate point optimal invariant test of a unit root in the context of testing an 

ARIMA (p-1, 1, q) process with drift against an ARMA(p, q) trend-stationary 

process in which unknown nuisance parameters are replaced with estimates. 

Gallego and Diaz (2007) extended the tests of Saikkonen and Luukonen in 

univariant ARIMA models to multivariate ARIMA models. 

 

This raises the question of why not replace unknown nuisance parameters by 

estimates? If we return to the general problem of testing (1) against (2), then we 

might regard δ  as a vector of nuisance parameters and θ  might be re-arranged 

and split into parameters of interest aθ  and those not of interest, denoted bθ , so 

that θ ′  = ( ),a bθ θ′ ′  .  If we now write ( )f x θ  as ( , ),a bf x θ θ  the suggestion is that 

a point optimal like test might be based on rejecting the null for large values of the 

likelihood ratio 

 

1
ˆ( , )

ˆ( )

a bf x

f x

θ θ

δ
                                                                                         (7) 

 

where 1aθ  is the point at which one wishes to optimize power, b̂θ  is the maximum 

likelihood estimate of bθ  under 1( , )a bf x θ θ  with bθ  being the only parameters 

that are estimated, and δ̂  is the maximum likelihood estimate of δ   under 0H .  
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Unfortunately such a test is no longer optimal because of the replacement of 

parameters with their estimates which are stochastic. However, as we shall see in 

Section 3.5, there can be circumstances in which this approach provides a test 

with optimal asymptotic properties. 

 

There is also the issue of finding appropriate critical values.  An approach that has 

not explicitly been raised in the literature (to the best of our knowledge) is to 

exploit the parallels between (7) and the Cox and related tests.  Dastoor and Fisher 

(1987, 1988) noted the link between point optimal invariant tests of regression 

disturbances and Cox tests. They observed that this class of tests can be regarded 

as a class of Cox tests which have an exact distribution. 

 

The problem of finding the asymptotic distribution of the log of (7), namely 

 

              ˆlog ( , )a bf x θ θ - ˆlog ( )f x δ                                                                 (8) 

 

under the null hypothesis is exactly the problem that Cox (1961, 1962) considered 

in his seminal papers. He proposed standardizing (8) by finding or approximating 

its mean and standard deviation, and treating the standardized statistic as 

asymptotically standard normal (see White (1982) for a discussion on the 

regularity conditions involved). Standardizing (8) is not always easy, but there is a 

very rich literature on the application of the Cox approach, see for example survey 

articles by MacKinnon (1983), McAleer (1987), Gourieroux and Monfort (1994) 

and Pesaran and Weeks (2003).  The latter paper explores two more practical 

approaches to this problem, involving the use of simulation methods and 

parametric bootstrap methods. 

 

Two important points should be borne in mind when using this asymptotic 

approach.  King and McAleer (1987) found this standardized version of the Cox 

test to have very poor small sample size and power for the problem of testing 

AR(1) disturbances against MA(1) disturbances in the linear regression model.  

For a sample size of 30 at the nominal significance level of 5%, sizes can be as 

high as 0.5 while, when simulation methods are used to find appropriate small 
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sample critical values, the power of the test does not rise much above its 

significance level of 0.05.  As with many asymptotic tests, the standardization of 

the original statistic can do more harm than good if it is based on poor estimates.  

If a solution can be found without the standardization step (see for example, King 

(1998)), it is likely to produce much better small sample power and size.  If 

standardization is needed, then it is important that the sample size is at least 100 

and preferably larger. 

 

The second point is not to think of the density 1( , )a bf x θ θ  as that of the 

alternative model (as one typically would when conducting a Cox test).  We are 

just working with that as a device for constructing a good test against the more 

general model given by (2). 

      

3.5 Using an asymptotic approach 

The biggest development in the last two decades has been the construction of 

point optimal tests with the use of asymptotics to simplify some of the problems 

caused by nuisance parameters. The seminal paper in this literature is Elliott, 

Rothenberg and Stock (1996).  They considered the following data generation 

process: 

 

          ty  = td  + tu ,                       t  = 1, …, T , 

and  

          tu  = 1tuα −  + tv , 

 

where td  is a deterministic mean component, tu is an error term with zero mean, 

tv  is a stationary disturbance process with mean zero and ( )1,..., Tv v ′ having 

covariance matrix Σ .  Their interest is in testing for a unit root, namely 0H : α  = 

1 against aH : α  < 1.  Nuisance parameters/components in this problem are td , 

0u , and Σ .  With particular assumptions about td  and 0u  and the restrictive 

assumption that Σ  = 2Iσ , Dufour and King (1991) proposed point optimal 

invariant tests for this problem. 
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In order to analyse the qualities of competing tests of this general problem, Elliott 

et al. (1996) reparameterized the parameter under test to 

 

η  = ( 1)T α −    

    

and then derived the asymptotic power envelope using local to unity asymptotics 

and point optimal tests assuming η  = η , Gaussian errors and known values of 0u  

and Σ .  A major determinant of the behavior of the asymptotic power envelope is 

what is known about td . If td  is known or is unknown but slowly evolving, the 

asymptotic power envelope remains the same.  If td  = tzβ ′ , where β  is an 

unknown 1q ×  parameter vector and tz  is a 1q ×  vector of known regressors, then 

invariance arguments can be used to construct an asymptotic power envelope 

using the family of point optimal invariant tests. 

 

The authors then consider a class of feasible point optimal invariant type tests that 

require a choice of η  for when 0u  and Σ  are unknown but whose asymptotic 

power function kisses the asymptotic power envelope constructed using known 0u  

and Σ  and particular forms of td .  In that sense, their tests can be regarded as 

point optimal. An argument they could have used and acknowledge in subsequent 

papers (Elliott, Müller and Watson, 2012 and Elliott and Müller, 2014) is to use 

the LeCam limits of experiments approach to justify the efficiency of the resultant 

test.  (For a textbook discussion of this approach, see van der Vaart, 1998, Chapter 

9 and for an econometric testing application see Ploberger, 2004).  Müller (2011) 

provides an excellent overview of how this alternative approach works for the 

types of testing problems discussed in this section. A key result is that for any 

limiting experiment (model), an optimal test in the limit must be the limit of 

optimal tests in the small sample setting.  This gives an insight as to how to 

construct asymptotically optimal tests based on the limiting experiment (model). 

Elliott et al. (1996) noted that in the case of td  known (or equivalently td  = 0), 

Dickey and Fuller’s (1979) t  test has asymptotic power equal to that of the power 

envelope when the asymptotic power is 0.5.  They gave some recommended 
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values of η  for use in their test and also investigated its small sample properties.  

Their recommended tests, including a modified Dickey-Fuller t  test, were found 

to largely follow their asymptotic properties, although some forms of Σ  can cause 

poor size and power, particularly if tv  has a large moving average component. 

Burridge and Taylor (2000) provided further analysis of the power properties of 

Elliott et al.’s proposed feasible test. 

 

There have been a number of useful extensions of this work.  Rothenberg and 

Stock (1997) applied the methodology to a simpler AR(1) model with well-

behaved but non-normal errors.  They found that the asymptotic and small-sample 

power curves and power envelopes can be sensitive to the degree of non-

normality in the errors with heavy tailed distributions being a particular problem. 

 

A critical assumption that Elliott et al. (1996) made is that the initial error 0u  has 

finite variance for all values of α  in the neighbourhood of α  = 1.  This rules out 

the possibility it has variance 2 2(1 )σ α−  for α  < 1 which is often assumed for a 

stationary AR(1) process.  Elliott (1999) reworked the analysis under this latter 

assumption and found it changes the class of asymptotically optimal tests, 

confirming that these tests are sensitive to what is assumed about the distribution 

of 0u .  Vougas (2009) discussed the relationship between Elliott’s new tests and 

Dufour and King’s (1991) point optimal tests.  He suggested a modification to the 

latter to improve its usefulness and tabulated critical values for two important 

cases.   

 

Xiao (2001) considered estimation and testing (including point optimal type 

testing) in the Elliott et al. (1996) model under the assumptions of trending means 

and general non-Gaussian disturbance distributions. 

 

Müller and Elliott (2003) reparameterized the dynamic model considered by 

Elliott (1996) et al. and showed that the power of most unit root tests depends 

(among other things) on a parameter ξ  which they define as the deviation of the 

initial observation 0y  from the model’s deterministic component. For the problem 
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of testing 0H : α  = 1, ξ  is a nuisance parameter that needs to be dealt with in 

some way.  They took the innovative approach of considering the class of tests 

that optimize power at a chosen value of α , α , averaged by a weighting function 

over the range of possible ξ  values.  This allowed them to construct a new class 

of tests using Elliott et al.’s approach although their main emphasis was to provide 

a theoretical basis for understanding the power properties of a range of existing 

tests.  In a follow-up paper, Elliott and Müller (2006a) further investigated this 

dependency on ξ .  They proposed an asymptotically efficient unit root test, 

whose power curve changes least with changes in ξ , for use when the researcher 

knows very little about the possible magnitude of ξ .  Wang (2014) investigated 

the use of bootstrap methods to apply Elliott et al.’s (1996) asymptotic point 

optimal test used to map out the power envelope but which is infeasible because it 

assumes Gaussian errors and known values of 0u  and Σ .  Monte Carlo 

simulations show that the bootstrap PO test is a feasible test that has good small-

sample size and power properties. 

 

The reverse problem of testing the null hypothesis of stationarity against the 

alternative of a unit root was considered by Müller (2005) who used the local to 

unity point optimal tests to improve the asymptotic properties of the locally best 

invariant tests. 

 

Elliott et al.’s (1996) methodology was applied by Elliott and Jansson (2003) to 

the problem of testing for a unit root in a variable when the variable is modeled 

with a number of stationary related variables.  They showed that good power 

gains can be obtained when such covariates are included in the test procedure as 

pointed out by Hansen (1995).  This step involved the construction of the power 

envelope assuming knowledge of the nuisance parameters.  A feasible test was 

constructed that can be applied by running vector auto-regressions.  It was shown 

to have good small-sample power properties and to kiss the asymptotic power 

envelope at a chosen point. 

 

Jansson (2005) applied the Elliott et al. (1996) methodology to the problem of 

testing the null hypothesis of cointegration against the alternative of no 
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cointegration in a linear dynamic model.  The asymptotic power envelope 

assuming Gaussian errors and known nuisance parameters was derived.  He then 

constructed a feasible point optimal test and investigated its asymptotic and small-

sample performance. For an extension to this work, see Kurozumi and Arai 

(2005). 

 

In another application of Elliott et al.’s (1996) approach, Elliott, Jansson and 

Pesavento (2005) investigated the problem of testing for a unit root in a known 

cointegrating vector. The feasible test they proposed was shown to be 

asymptotically equivalent to a point optimal invariant test.  A related paper by 

Elliott and Pesavento (2009) considered the problem of testing the null hypothesis 

of no cointegration when the cointegrating variables are known to have a unit 

root.  They traced out the power envelope using point optimal tests that maximize 

the weighted average power for different weightings over the unknown 

cointegrating vector parameter space.  This provides power bounds for the 

evaluation of a range of existing tests.  It is also another illustration of dealing 

with an influential nuisance parameter by constructing tests that maximize 

weighted average power at a point. 

 

Elliott and Müller (2006b) investigated the problem of testing for time variation, 

instability or breaks in regression coefficients of the linear model.  They showed 

that for a wide class of persistent breaking processes and assuming Gaussian 

errors, a range of tests designed to be efficient in small samples are asymptotically 

equivalent.  This allowed them to recommend an asymptotically point optimal test 

that is very attractive because of its ease of application and its small-sample power 

properties.  Lee (2009) reworked their analysis under weaker assumptions 

including the error distribution being unknown.      

 

Using the GLS-detrending approach that is a feature of the asymptotic point 

optimal invariant tests of Elliott et al. (1996), Perron and Rodriguez (2003) 

extended the class of M-tests for unit roots proposed by Perron and Ng (1996) and 

Ng and Perron (2001) to allow for a change of unknown timing in the trend 

function.  Liu and Rodriguez (2006) extended this work along the lines of Elliott 
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and Jansson (2003) to testing for a unit root in the presence of a structural break of 

unknown timing and proposed a new feasible point optimal test. 

 

Gregoir (2006) applied Elliott et al.’s approach to testing for the presence of a pair 

of complex conjugate unit roots in a real time series.  The feasible test that 

resulted allowed him to propose some new, near-efficient, seasonal unit root tests.  

Building on Gregoir (2006), Rodrigues and Taylor (2007) extended the results of 

Elliott et al. (1996) to testing for seasonal unit roots.  They found that the 

asymptotic point optimal test of a root at a particular spectral frequency, 

asymptotically is independent of whether there are unit roots at other frequencies. 

 

Moon, Perron and Phillips (2007) considered testing for unit roots in panel data 

models.  They constructed the local asymptotic power envelope under a range of 

scenarios and suggested a point optimal invariant panel unit root test for each 

case.  This was extended by Moon, Perron and Phillips (2014) to allow for the 

possibility of serially correlated errors.  

 

The choice of point at which asymptotic power is optimized in Elliott et al.’s 

(1996) approach, is driven by asymptotic considerations.  Broda, Carstensen and 

Paolella (2009) asked if there are small-sample considerations that can be used to 

help improve power.  They showed there are advantages in expressing the various 

tests as ratios of quadratic forms in normal variables.  This allowed them to apply 

Juhl and Xiao’s (2003) idea of using a power loss criterion to determine the 

chosen point under the alternative hypothesis.  They also showed that there are 

advantages in using recursive GLS rather than conventional GLS in the feasible 

test.  

 

Finally, Elliott et al.’s (1996) emphasis on the power envelope and the small 

sample point optimal test allowing the power envelope to be traced out has led to 

a new standard in the evaluation of new tests, that is to include a comparison of 

the new test’s power with a particular power envelope. 
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3.6 Integrating out nuisance parameters 

Elliott, Müller and Watson (2012) used a weighting function to integrate out 

nuisance parameters under the alternative hypothesis.  This results in a test that 

maximizes average power and any weighting function can be used.  For nuisance 

parameters under the null hypothesis, this approach requires considerable care 

because as noted in Section 3.3, the weighting function needs to be the least 

favourable distribution.  Elliott et al. (2012) propose an approximate least 

favourable distribution be used and that it be chosen to minimize power at the 

chosen point (a requirement of the least favourable distribution). Müller and 

Watson (2013) apply this approach to cointegration testing while Elliott and 

Müller (2014) apply it to the problem of testing hypotheses about the pre and post 

break values of a parameter when there is a single break in a time series with 

unknown timing. A third application is provided by Müller (2014) and involves 

heteroscedasticity and autocorrelation standard errors for time series inference.  

 

4. Point optimal testing against two-sided and multi-dimensional alternatives    

Andrews, Moreira and Stock (2006) considered two-sided testing of the 

coefficient of a single included endogenous regressor in an instrumental variables 

regression.  They constructed a two-sided power envelope for invariant similar 

tests via point optimal invariant similar two-sided test. This allowed them to 

assess the properties of a range of existing tests and make recommendations on 

which are best to use.  Their two-sided power envelope was obtained via a class of 

two-point optimal invariant tests which involve maximizing the average power at 

two chosen points, one on each side of the null hypothesis.  Care needs to be taken 

in how these points are chosen – they used an asymptotic efficiency requirement.  

They also briefly mentioned two other approaches to constructing two-sided 

power envelopes, both of which give similar (or the same) power envelopes. 

These findings were extended to the class of non-similar tests by Andrews, 

Moreira and Stock (2008). 

 

Dufour and Iglesias (2008) suggested a novel approach to point optimal (and 

locally best) testing involving a potentially multidimensional composite 

alternative.  Their approach requires splitting the sample into two parts, a smaller 

sample (approximately 10%) that is used to decide on the alternative hypothesis 



Page 24 of 42 
 

point for the point optimal test and the remainder of the sample that is used to 

conduct the test.  The alternative hypothesis point is determined either via a 

consistent estimator (if one is known to exist) or by maximizing the asymptotic 

power.  They called this the split-sample Monte Carlo adaptive optimal test and 

demonstrated its application to a range of volatility models with Gaussian or 

heavy-tailed errors.  Their test has attractive features in that it does not require the 

existence of moments and can be applied in a range of settings such as non-

normality and non-stationarity.  The negative is the power loss that comes from 

not using all the observations in the actual test.  The hope is that this loss will be 

small and more than compensated by optimizing power with the remaining 

observations at the most likely alternative hypothesis point. 

 

Dufour and Taamouti (2010) constructed point optimal sign-based tests in linear 

and nonlinear regression models that are valid under non-normality and 

heteroscedasticity of unknown form.  A split-sample approach is used in order to 

choose the alternative point in a way that brings the power curve close to the 

power envelope.  

 

5 Fertile areas for future research 

There is no doubt that the theory of point optimal testing has come a long way 

since 1987.  The use of power envelopes as a benchmark for the power function of 

new tests has become more prevalent, particularly in the unit root testing 

literature.  Clearly learning how best to deal with nuisance parameters has been a 

significant thrust of the literature.  A second issue that to date has received very 

little attention (see the previous section), is how the principle of point optimal 

testing might best be employed against two-sided and multi-dimensional 

alternatives.   

 

5.1 Dealing with nuisance parameters under the null hypothesis    

It is our view that different approaches to handling nuisance parameters might be 

needed depending on whether they occur under the null or alternative hypothesis. 

We turn first to the null hypothesis case. 
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Using the notation of Section 3.2, assume after the problem has been reduced 

down to its smallest dimensions through invariance and other arguments, the null 

hypothesis is given by (1).  Effectively, δ  is a vector of nuisance parameters.  

The problem with δ  is the difficulty it can cause one when controlling the 

probability of a Type I error (PTIE).  If the point optimal test of interest is a 

similar test (has the same PTIE for all parameter points, δ , under the null 

hypothesis), there is no issue.  If there are a range of point optimal tests to choose 

from, say of the form of (4) and indexed by 1δ  , then one might choose the 1δ  

value that maximizes power of the resultant test at 1θ . (An example of this 

approach of choosing nuisance parameter values to maximize power is choosing 

band-width parameters used in a test statistic; see Gao and Gijbels, 2008, Sun, 

Phillips and Jin, 2008, Gao et al., 2009a, 2009b and Gao and King, 2014). 

 

A more likely scenario is that the preferred test statistic is non-similar.  The next 

obvious approach is to see if asymptotic arguments (using Müller, 2011 for 

guidance) allow one to replace the remaining nuisance parameters with estimates 

for an asymptotically optimal test.  In the remainder of this section, we will 

assume this is not the case. The conventional approach to non-similar testing is to 

find the critical value that makes the PTIE less than or equal to the desired test 

size (say 5%) over the entire null hypothesis parameter space, ∆ . If the null 

hypothesis holds, then δ  will have a true value which we will denote as 0δ . If the 

desired size of the test is α  and the PTIE at 0δ  is 0α , then rather than applying an 

α  level test, we are applying an 0α  level test with a consequential loss in power.  

A test of the form of (4) is no longer point optimal if 0α  < α  because of this 

power loss.  It could be that 0α  is close to zero which might result in a rather 

extreme drop in power. One solution already discussed in Section 3.2 (and by 

Elliott et al., 2012) is to look for the least favourable distribution over the δ  

parameter space, ( )h δ∆ .  Lehmann and Romano (2005) note that we are 

essentially looking for the weighting function, ( )h δ∆ , that gives the lowest power 

at 1θ .  This seems to be the opposite of what we should be doing, particularly 

given there is information in the observed sample, x , about what likely 0δ  values 
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might be when the null hypothesis is true.  If we knew what 0δ  was, then the 

appropriate test would be (4) with 1δ  = 0δ  and we could easily find the 

appropriate critical value, c , by simulating the null distribution from ( )0f x δ .   

 

Typically 0δ  is unknown but almost always we can find its posterior density 

function, at least empirically.  This might be used to average p  values conditional 

on different 0δ  values as suggested by King (1996).  Whether there are other ways 

of using the information in the data about 0δ  to help build a powerful test is 

clearly an important area for future research.  The main idea is that we only need 

to worry about controlling the size of a test for reasonably likely 0δ  values. As the 

sample size grows, this neighbourhood of concern should shrink to the true value 

0δ .   

 

5.2 Dealing with nuisance parameters under the alternative hypothesis   

Turning to the problem of nuisance parameters under the alternative hypothesis, 

we think the most fruitful approach is to optimize average power over the 

nuisance parameter space at the chosen value of the parameter vector of interest.   

 

Using the notation of Section 3.4, suppose θ ′  = ( ),a bθ θ′ ′  where aθ  is the 

parameter vector of interest and bθ  is the nuisance parameter vector.  We now 

write ( )f x θ
 
as ( ),a bf x θ θ

 
and let ( )b bf θ  be an appropriate (or chosen) 

weighting function over the bθ  parameter space which we will denote as bΘ .  

 

If we denote the rejection region (the complete set of x  values for which the null 

hypothesis is rejected) of a test of (1) against (2) by ω , then its PTIE is given by  

 

                         ( )f x dx
ω

δ∫   

 

and its power is given by                  

                        ( ),a bf x dx
ω

θ θ∫  
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which is clearly a function of aθ  and bθ . The power averaged by ( )b bf θ  over bΘ  

is therefore  

                       ( , ) ( )
b

a b b b bf x dx f d
ω

θ θ θ θ
Θ
∫ ∫  

                       =  ( , ) ( )
b

a b b b bf x dx f d dx
ω

θ θ θ θ
Θ
∫ ∫  

                       = ( )a af x dx
ω

θ∫   (9)       

where  ( )a af x θ  = ( , ) ( ) .
b

a b b b bf x f dθ θ θ θ
Θ
∫   (10)       

 

Observe that (9) can be interpreted as the power of the test with rejection region 

ω  when the data has been generated from the distribution with density ( )a af x θ  

given by (10). 

 

As noted by Begum and King (2005a, p 1083), the GNPL implies that the test of 

0H : δ  = 1δ  against (2) that maximizes average power over bΘ at aθ  = 1aθ

involves rejecting 0H  for  

                    1

1

( )

( )
a af x

f x

θ
δ

 > c   (11)      

where c  is the appropriate critical value. 

 

It may be that there is a closed form solution to the integral in (10).  If ( )b bf θ  is 

considered to be a prior then the literature on conjugate prior distributions might 

help find a class of weighting functions ( )b bf θ for which a closed form of (10) is 

known. 

 

If a closed form solution to (11) is not available, we can proceed as follows.  Let 

,1bθ , …, ,b mθ  be a simple random sample from ( )b bf θ of size m , then via Monte 

Carlo integration, the left-hand side of (11) can be approximated by 
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                        1

1 1

( , )1

( )

m
a bi

i

f x

m f x

θ θ
δ=

∑     (12) 

 

and the test that maximizes average power over bΘ  at aθ  = 1aθ  involves rejecting 

the null hypothesis for large values of (12).  If need be, the critical value c  can be 

found by simulating (12) for repeated samples of x  from the 1( )f x δ

distribution. 

 

The literature on optimizing average power does suggest that some care is needed 

in choosing ( )b bf θ .  Future research is needed to see how well these tests might 

work in practice. 

 

 

5.3 Handling multi-dimensional parameter spaces under the alternative 

hypothesis   

With respect to multidimensional testing, we will illustrate a potential approach to 

point optimal testing by considering the problem of testing θ  = 0 against θ  ≠  0 

when x  has density ( )f x θ , where θ  is 1q ×  and Θ  is qR .  Observe that θ  can 

be reparameterized into polar coordinates ( )1 1, ,..., qr φ φ −
′ , r  ≥  0, jφ  ∈ [ ]0,π , j  

= 1, …, 2q −  and 1qφ − ∈ [ ]0,2π , via 

                 r  = ( )1/2θ θ′ , 

                 1θ  = 1cosr φ , 

                 jθ  = 
1

1

sin cos
j

i j
i

φ φ
−

=

 
 
 
∏ ,   2 ≤  j  ≤  1q −  

                 qθ  = 
1

1

sin
q

i
i

φ
−

=
∏ . 

 

The problem of testing θ  = 0 against θ  ≠ 0 now becomes one of testing whether 

the scalar r  = 0 against r  > 0, in the presence of nuisance parameters 1φ , …, 1qφ −  

which collectively determine a direction from the origin in qR  space.  For 
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examples of this kind of transformation being usefully used in hypothesis testing, 

see King and Shively (1993) and King and Edwards (1989). 

 

Along the lines of (11), a test can be constructed that has maximum average 

power across the nuisance parameters space, at r  = 1r .  If the weighting function 

is chosen to be uniform overall direction from the origin in qR  space, then our test 

statistic (12) becomes the sum of likelihood ratios sampled over random 

directions from θ  = 0.  The choice 1r  could be that which makes the average 

power at r  = 1r  equal to 0.75.  Again further research is needed to see how well 

this class of optimal tests might work in practice.              

   

         

6 Concluding Remarks 

As the list of references that follow attest, there has been considerable innovation 

and research on point optimal testing since 1987.  A high proportion of this new 

literature has been in the very highly researched area of unit root testing.  This has 

proved to be an extremely difficult testing problem that point optimal testing and 

particularly its application in a local-to-unity asymptotic setting by Elliott et al. 

(1996) and more recently Müller (2011) have helped solve, although we continue 

to see innovations that result in power improvements.  In particular, Broda et al. 

(2009) have reminded us of the importance of small-sample consideration on 

power by using Juhl and Xiao’s (2003) optimal approach to selecting the point at 

which power is optimized and recursive GLS detrending rather than conventional 

GLS detrending in the feasible test. 

 

Juhl and Xiao’s investigation of “optimal” point optimal testing does provide 

some guidance on the application of Davies’ (1969) beta optimal test. We now 

have a better idea of what level of power one should choose to optimize power at.  

Davies (1969) originally recommended 0.8, King (1985b) suggested 0.65 and 

many other researchers have used 0.5.  We now recommend 0.75 as a 

consequence of Juhl and Xiao’s (2003) finding. 
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The split sample testing approach to point optimal testing suggested by Dufour 

and Iglesias (2008) may have merit, but more research is needed to see if this is 

indeed the case.  The biggest issue is where to split the sample between that used 

to choose the point at which power is “optimized” and that used to conduct the 

test.  Juhl and Xiao’s (2003) optimal approach could be used to determine the 

optimal split as well as the point at which power is “optimized”.  The resulting 

power function could then be compared with other point optimal tests which use 

the full sample for testing to see whether the power loss from splitting the sample 

is too great.  We guess it might be.   

 

The modern literature on point optimal testing has provided a greater emphasis on 

the power envelope. A number of recent papers proposing new tests have 

compared the power of their test with a particular power envelope. This approach 

to test evaluation should be encouraged where possible. 

 

In this paper we have made a series of suggestions for future research.  These 

include the need to handle nuisance parameters differently under the null and 

alternative hypotheses.  The literature on the Cox and related non-nested tests may 

help with finding appropriate critical values if nuisance parameters are replaced 

with their maximum likelihood estimates.  Optimizing average power across the 

nuisance parameter space under the alternative at the chosen point for the 

parameter(s) of interest, in our view, is an approach worthy of further scrutiny.  

We give a general formula for the construction of such tests in a general setting.  

We also discuss how a simple transformation from Cartesian to polar coordinates 

can transform a multivariate testing problem into a one-sided scalar testing 

problem with nuisance parameters that is amenable to such a solution. 

 

It is fair to conclude from our review of the recent literature and our suggestions 

for new generic point optimal tests, that point optimal testing has much greater 

applicability than was apparent in 1987. 
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