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Abstract

In the absence of uniformly most powerful (UMP)t$esr uniformly most powerful

invariant (UMPI) tests, King (1987c) suggested tise of Point Optimal (PO) tests,
which are most powerful at a chosen point underaternative hypothesis. This
paper surveys the literature and major developmemtpoint optimal testing since
1987 and suggests some areas for future reseaspitslinclude tests for which all
nuisance parameters have been eliminated and deailin nuisance parameters via
() a weighted average op values, (ii) approximate point optimal tests,)(iii
plugging in estimated parameter values, (iv) usisgmptotics and (v) integration.
Progress on using point-optimal testing princidl@stwo-sided testing and multi-
dimensional alternatives is also reviewed. The papacludes with thoughts on
how best to deal with nuisance parameters unden bod null and alternative
hypotheses, as well as the development of a ness @& point optimal tests for

multi-dimensional testing.
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1 Introduction

Constructing hypothesis tests or choosing whichttegse in econometrics can be
difficult. Sometimes we are lucky and have lotsdafta observations at our
disposal so the choice of test statistic may ngtdréicularly crucial. On the other
hand, too often the sample size is relatively sraall then we want to use an
accurate and powerful test. Because our data doesypically come from a
controlled experiment but rather from our best #$f@f observing a complicated
economy, hypothesis testing has an enhanced rgiayoin our quest to model

selected elements of an economy.

Hypotheses under test can be classified into tywesysimple and composite. A
simple hypothesis is one in which the observed daimes from a sole
distribution with all parameters known. A compesitypothesis is made up of
more than one distribution, typically involving paneters that can take a range of
values. The main result that helps us construetepiul tests is the Neyman-

Pearson lemma (see Lehmann and Romano, 2005, .plt 8Mtes that the most
powerful (MP) test of a simple null hypothesid, () against a simple alternative
hypothesis H,) is based on rejectingl, for large values of the ratio of thd,
density to theH, density. Unfortunately it is very rare that wetta simple null

against a simple alternative.

When one moves to testing a simple null againsbraposite alternativeH,.)
then it can be less clear how to proceed. A ussdutept for understanding the
options is the power envelope. For a given levaignificance (say 5%), it can

be traced out by calculating the power of the MBt tef H, against each
distribution underH,.. If the distributions undeH,, can be indexed by a

parameter vectory, then the power envelope will be a functionyaf No test can
have power above the power envelope. The best matds if there exists a test
whose power is equal to the power envelope. Eh& uniformly most powerful
(UMP) test. A second best is to find a test whasegy is very close to the power

envelope. We might call such a test an approxin&t®P test.
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In the absence of a UMP test, Cox and Hinkley (19¥402) considered three

alternative approaches. The first of these isptiat optimal test which involves

the MP test ofH, against the simple hypothesis constructed by ¢hggs to be
“somewhat arbitrarily a ‘typical’ point”, say = y,. As a test oH, againstH,_,
itis MP at y = y,, or alternatively, its power curve kisses the poamvelope at

y = y,. If unknowingly a UMP test does exist, then ttast will be UMP. A

variation on the point optimal test is Davies’ (99teta optimal test which
maximizes power (beta) at a chosen level, say 0&& Another is Schaafsma
and Smid’s (1966) most stringent somewhere mosteplolvtest which chooses
the point at which power is optimized to minimizee tmaximum difference

between the test’s power and the power envelope.

The second option is to remove any arbitrarinessdmgtructing the test which is
the limit of the point optimal tests as the chogpamt moves towards thél,
value. Wheny is a scalar, this is known as a locally best goally MP) test. Its
power curve has the steepest slope of all testsi@asnoves away fron, (see
Ferguson (1967, p.235) and King and Hillier (1985l) y is a vector or itsH,
value is inside the range of values (i.e., the two-side case), then the test mos
likely will differ depending on the direction takem )y space when forming the
limit. If the test is invariant to the directioakien, then we have a uniformly
locally best test with a power curve with steeséspe in all directions away from
the null (for an example, see King (1987b) and Kargd Evans (1988)). An
alternative solution, when there is no uniformlgdfly best test, is to construct
the test whose power curve slope averaged ovetiralttions in they space is

maximized. This is known as a locally most meawegxtul (LMMP) test (see
Sen Gupta and Vermeire (1986) and King and Wu ()997

The third approach discussed by Cox and Hinkley4]%s to choose a test which
maximizes some weighted average of power. The LM®EHR is a particular
example of this approach and Andrews and Plobe{t@94) provide another
prominent econometric example. In general, thevdgch maximizes a weighted

average of power can be constructed using a speas# of the generalized
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Neyman-Pearson lemma (GNPL) (see Lehmann and Rqn2f@b, p.77 and
Begum and King, 2005a). Essentialy, is replaced by a weighted average of

the densities to make a simple alternative andetieis the MP test dfl, against

this new alternative. It is worth noting that angadptimal test can be viewed as a
test which maximizes weighted average power; tlaisecbeing where all the

weight is put on the point at which power is opied.

Things become even more complicated as we mowstimg a composite null

(H,.) against either a simpleH() or a composite l,.) alternative. The GNPL
does provide some options in some rather specsascdf H,. is made up of a

finite number of completely determined densitiesl ave are testing against a
simple alternative, the GNPL provides the most pfwéest if such a test exists.

If the alternative is composite, then clearly incdso provide the point optimal

solution or the maximized weighted power solutibnthe more standard case of
a composite null hypothesis with a density indekgdan unknown parameter

vector, the GNPL can provide the most powerful gggtinst a simple alternative
(if such a test exists) but with the twist that raxge size is controlled over a
countable number of subsets of the null paramgi@ces For a concise summary
of the range of optimality properties that haverbeensidered in the literature,

see Sen Gupta (1991).

Based on a range of early applications largely Iwiag testing the covariance
matrix of the linear regression model (see Spjoty@P67), Davies (1969),
Berenblut and Webb (1973), Fraser, Guttman andnS{l®#76), Bhargava,
Franzini and Narendranathan (1982), King (198118389 1983b, 1984, 1985a,
1985b, 1986, 1987a), Franzini and Harvey (19838)g& and Bhargava (1983),
Evans and King (1985a, 1985b, 1988), King and Sr{i#86), Shively (1986,
1988a, 1988b), Nyblom (1986) and Dufour and Kin§@91)), King (1987c)
argued the case for the use of point optimal tgstikle observed they best suit
problems in which the parameter space under tiegnaliive hypothesis can be
restricted in scope by theoretical and technicatlfsas variances being positive)
considerations. They work well when the null hypstis can be reduced to a

simple hypothesis by invariance (see, King 198@7b9 or similarity arguments
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(see Hillier, 1987). They also allow one to tram# the maximum attainable

power represented by the power envelope for a gestimg problem.

It is important to note that the choice of a paiptimal test does not mean that we
believe the point at which power is optimized fuliefines the alternative
hypothesis. Rather, it is a choice of a partictéat with a power curve that kisses

the power envelope at the chosen point.

The aim of this paper is to update the review giveKing (1987c) and outline
the literature and its findings since 1987. Thera particular emphasis on how
point optimal tests might be applied in cases wlieeee are nuisance parameters
that cannot be eliminated through invariance orilaity arguments. The paper
also aims to make some further suggestions onigptutor problems that are less
favourable to point optimal tests such as multa@ritesting and the presence of

nuisance parameters.

The plan of the paper is as follows. Section 2enes the literature since 1987 on
point optimal testing where all nuisance parametease been eliminated,
typically through invariance arguments. Section &egorizes the various
approaches to dealing with nuisance parameteraudimg via (i) weighted

averages ofp values, (ii) approximate point optimal tests,)(iplugging in

estimated values, (iv) using asymptotics and (wggrating out the nuisance
parameters. Progress on using point optimal ggtimciples for two-sided and
multi-dimensional alternatives is reviewed in Sectd. We give our thoughts in
Section 5 on how best to deal with nuisance pammetnder both the null and
alternative hypotheses as well as presenting aatesg of point optimal tests for

multivariate testing. Finally, some concluding eeks are made in Section 6.

2 Testswhere all nuisance parameter s have been eliminated

In this section, we update King’s (1987c) reviewests for problems in which all
nuisance parameters have been able to be elimjrigdally through invariance
arguments. A nice introduction to point optimaVvanant testing in the linear

regression model is given by Shively (2006). Workimproving the speed and
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accuracy of numerical algorithms for calculatinge tip values (and critical

values) of these and related tests have been eeployt Shively, Ansley and Kohn
(1990) and Ansley, Kohn and Shively (1992). Th8hi¢ely, Kohn and Ansley,
1994) also constructed a point optimal invariaist fer nonlinearity in a semi-

parametric regression model.

Since 1987, point optimal invariant tests have he®posed for a wide range of
testing problems involving the covariance matrixthe linear regression model.
These include (i) testing for autocorrelation ine tipresence of missing
observations (Shively, 1993), (ii) testing for figsrder autoregressive (AR(1))
disturbances when the data is made up of the aggred a large number of small
samples (Bhatti, 1992), (iii) testing for spatiak@correlation in the disturbances
(Martellosio, 2010, 2012), (iv) testing for blocKfexts caused by random
coefficients (Bhatti and Barry, 1995), (v) testifay quarter-dependent simple
fourth-order autoregressive (AR(4)) disturbancesu(hd King, 1996), (vi)
testing for joint AR(1)-AR(4) disturbances againgint MA(1)-MA(4)
disturbances (Silvapulle and King, 1993) and (t&$ting for the presence of a
particular error component (El-Bassiouni and Ch&®04). Hwang and Schmidt
(1996) extended the work of Dufour and King (199@h testing the
autocorrelation coefficient for stationary and ratisnary AR(1) disturbances
while Dufour and Neifar (2008) extended it to thase of second order
autoregressive (AR(2)) disturbances. Shively (20@f)structed a point optimal
invariant unit root test of a random-walk-with-drifiull hypothesis against a
trend-stationary AR(1) alternative. This test igsél to one of Dufour and King's
(1991) tests, the main difference being the treatnoé the initial observation.
Nakatsuma et al. (2000) also derived a point optimariant test for a unit root
in linear regression disturbances when the modeh ifirst-differenced form.
Honda (1989) showed that the class of these pgitimal invariant tests is
identical to the class of point optimal similartges This can also be concluded
from Hillier's (1987) discussion of similar test&mall (1993) observed that point
optimal invariant tests for AR(1) disturbances le inear regression can have
their power tend to zero or a fraction between za1d one as the autocorrelation

coefficient tends to one. This property, that iarsld by the Durbin-Watson and
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alternative Durbin-Watson tests (King, 1981a), aom$ that the power envelope

can have these properties.

Shively (1988a) devised a point optimal test fongstant regression coefficients
against Rosenberg’s (1973) return to normalcy ramdoefficient model in the
linear regression model. A modification to thisttevas suggested by Brooks
(1993) who (Brooks, 1995) also investigated itsusihess to Hildreth-Houck
(1968) random coefficients and non-normality. B®q1997) studied its use,
along with Brooks and King's (1994) APOI test, irs@quence of point optimal
tests to select a varying coefficient model. Kuwmokz (2003) derived the
asymptotic distribution of a point optimal invartatest for a random walk

regression coefficient in the linear regression ehod

Point optimal tests (called beta-optimal tests rafizavies, 1969) of the
equicorrelation coefficient of a standard symmetmeultivariate normal
distribution was found to be approximately UMP Hyai and King (1990). This
led to a series of papers involving point optimesting in related settings
including that of the linear regression model by ¥Whd Bhatti (1994) and Bhatti
(1995, 2000). The problem of testing the value haf tocation parameter of a
Cauchy density based on a single observation weassiigated by Atig-ur-
Rehman and Zaman (2008) who constructed the clapeint optimal tests for
this problem. Davies (2001) considered testingafonit root in an AR(1) process
and also testing the stationary hypothesis agairestintegrated process in this
setting. He observed that a time series made apBybwnian motion sampled at
equal time intervals plus white noise is exactlyhogonalized by the discrete

cosine transformation-Il and used this to constbeta-optimal tests.

3 Dealing with nuisance par ameter s when constructing point optimal tests

3.1 Weighted average of p values

An approach for dealing with unknown nuisance paians when constructing
locally best or point optimal tests that has cleatential and is worthy of further

examination was suggested by King (1996). He pregpasalculatingp values

conditional on the value of the nuisance paramedads then taking a weighted
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average of thes@ values using either an appropriate marginal liedd or the

posterior density function of the nuisance paramsetmder the null hypothesis.
The philosophy behind this approach is that theieformation in the data about
what nuisance parameter values are more likely tthers, and this information

should be utilized in the test procedure.

If we assume that the nuisance parameter valudsharen, then we can construct
a point optimal test and, using Monte Carlo methibdeeeded, calculate the
value for this test. Then thesp values, conditional on nuisance parameter
values, can be averaged over the marginal liketihmoposterior density function
of the nuisance parameters, typically using Mon&ldCintegration. If Monte
Carlo Markov chain methods are used to generat@iniga from the marginal
likelihood or posterior density of the nuisance gmaeters under the null
hypothesis, then the procedure can be implementediobdows. After an
appropriate burn-in period, for each drawing of thésance parameter vector,

calculate thep value of the test conditional on that value. FRellgy a large
number of drawings (say 2,000), take as fhealue of the test, the average of the

calculated conditionap values.

King (1996) investigated the small sample propsrtéthis approach for testing
linear regression coefficients in the presence R{1A disturbances. The test used
is the UMP invariantt test conditional on the value of the autoregressiv
parameter. This test, therefore, could be regaadeal point optimal test. King's
approach was shown to be typically more accurate the OLS based test, the
Durbin (1960) procedure outlined by King and Gileé984), the standard
maximum likelihood test and the test based on Wooldridge’s (1989) standard

errors that are robust to serial correlation artdoskedasticity.

3.2 Approximate Point Optimal Tests
The general testing problem considered by King 7t9& one of testing

H,: x has densityf (x|9) (1)

against
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H,: x has densityf (x|6), (2)

a

where x is the observed sampl@, is a wx1 vector of parameters restricted to
the setA and @ is a qx1 vector of parameters restricted to the &t Any

knowledge of the possible range of parameter vahassbeen used to keep the

parameter setA and© as small as possible.

A point optimal test in this context involves chimgsa value ofé, say g, at

which power is to be optimized. A general, but mety explicit approach to
constructing a point optimal test in this settimgdiscussed by Lehmann and

Romano (2005, p 83-4) in the context of testingoangosite null hypothesis

against a simple hypothesis, in our céte x has densityf (x|6?l). It involves

finding a probability density function over tie space h, (5) , constructing
fo(x) = IAf(x|5)hA(5) do

and

f(x8)

@) =~

It also requires that a critical valuweexists such that

Pr[s(ﬁl)>c‘x~f(x|5)] < a, forall 50A, A3)
holds, wherex is the desired level of significance and
Pr[s@)>clx ~f, x)]=a.

These requirements may not always be able to beimehich case it is doubtful
that a point optimal test can be found, at leasthy approach. Lehmann and

Romano (2005) give two examples in whibf(d) has all its mass at a single

point and one in whicln, (d) has mass at two points.
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Determining whath, (o) might be in a given application is not an eask.tahey
give the following suggestion which does provide eagnidance. We should be

looking for the h,(d) which is of the least help in determiningHf, is true. In
other words, we should look for thie, () that provides the lowest power at
f(x|6’1) of the most powerful tests based sf#)). If such a distribution can be

found, then if (3) also holds, we have a point li test anch, () is called the

least favourable distribution.

King (1987c) conjectured that such a test coul@ddmestructed if one could find a
point 9,0 A and the critical value such that

fxe) ..
f(x|3)

(9.,6) = (4)

is the most powerful test of the simple null
Hy: X has densityf (x|
against the simple alternative, ,
Pr[s(d1 6,) > c‘x ~f (x|51)] =a

and (3) holds withs(g) = s(9,,68,). This provides an operational approach to
constructing Lehmann and Romano’s test in whigid) has all its mass at a
single point. For situations where appropriate @alafd, andc cannot be found,
King (1987c) suggested an APO test which is base@p but requires), to be

chosen such that (3) holds wité,) = s(J,,6,) and
a—Pr[s(Jl,Hl)>c‘x ~ f (x|51)] (5)
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iS minimized.

King (1989) constructed an APO invariant (APOI) ttder simple AR(4)
regression disturbances in the presence of ARgtuidiances. For this problem,

invariance arguments were used to remove mosteithsance parameters so

that & = p, where g, is the AR(1) parameter ar@dl = (pl,p4)' where p, is the

simple AR(4) parameter. Note tha{ is a nuisance parameter that cannot be

eliminated, but its presence can be used to adyant&ing’s (1989) empirical

power comparison of different APOI tests showed ihas important to have

sensible rules for choosing = (,oll,,o“)' with a view to using the choice g,

to help minimize (5) and therefore improve the watity of the test. He
acknowledged that the test required a lot of commput to apply.

Silvapulle and King (1991) investigated the APOs$tt®f first order moving
average (MA(1)) disturbances against AR(1) distades in the linear regression
model. They conducted an empirical size and powenparison of their APOI
test with an asymptotic test of the second-ordéncsrelation coefficient of the
disturbances (which is zero under the null and rene- under the alternative) and
a Lagrange multiplier (LM) test. The study led te tonclusion that their APOI
test has superior small-sample size and power piepecompared to the other

two asymptotic tests they considered.

The problem of testing Hildreth-Houck (1968) agaiRsisenberg’s (1973) return
to normalcy random coefficients in the linear resgien model was investigated
by Brooks and King (1994). They were unable to s a point optimal test, so
considered the class of APOI tests. They found thests to have good small-
sample properties compared to the likelihood rama Wald tests in a limited

empirical power comparison.

Rahman and King (1994) considered APOI tests felirtg for random regression
coefficients in the presence of autocorrelationthe regression disturbances.
They compared the small sample properties of thests with those of the LM
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and LMMP tests based on the marginal likelihood. sEhliatter tests were found
to work well in this context and they concludedtttthe extra work required to
apply APOI tests hardly seems worthwhile, partidyléor larger sample sizes”.
An extension of this power comparison to non-noitpahay be found in King
and Rahman (2015).

Silvapulle (1994) constructed the APOI test for AR(isturbances against the
alternative of IMA(1,1) disturbances in the lineagression model. She compared
the small sample properties of the APOI test withst suggested by Godfrey and
Tremayne (1988) and the LM test. She found for p@dit correlated errors, the

APOQI test performs best while for negatively coatetl errors and larger sample

sizes the LM test is best.

Overall, the literature on APO testing suggestsusge does involve a lot of
computation for not much extra reward. Also, tlse wf an APO test does not
always guarantee the best test in terms of powhese sorts of conclusions have

led to the search for other solutions.

3.3 Alternative approaches to appr oximate point optimal tests

Using the GNPL, Sriananthakumar and King (200&pihiced another version of
the APO test of a composite null (henceforth ref@rto as theg test). They
found theg test has good size and power properties for tiveegasting problems

considered by Silvapulle and King (1991) and Siluég(1994). Its construction
involves deciding on appropriate representativengsounder the null hypothesis
via a trial and error process and controlling npléticritical values as explained

below.

In order to construct a point optimal test for itept(1) against (2), let us assume
that § [0 © is the point under the alternative hypothesis hictv we wish to
optimize power. Thus, the testing problem givenlingnd (2) can now be written

as testing (1) against’, .
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We then need to approximaté(x|5), by a finite number of densities. Regard

these as representative densitied ()X|5), J0A.

The g test is the test with the minimum number of reprgative densities under
the approximating null that allows the size to béfisiently controlled over the
complete null hypothesis parameter space. In thidd case ofv = 1 (i.e.,d is
a scalar) andA being a closed interval, experience is that astldaree
representative densities are needed for the appadixig null. Therefore, to

construct theg test, we start with three representative densite®ted
f.(x4). f,(x|8,) and ,(x|4,) and findk;, k, and k, values such that the

following size conditions (which are evaluated tha Monte Carlo method) hold

simultaneously:
P{f (x|6?1)>23:kifi(x|c5,)‘x~fj(x‘5].)}: a, j=1,..3 6)

In the case ofv = 1 andA being a closed interva8) and J, can be the two end
points of A, and d, can be any point in between. If three represematensities
are not adequate to control the sizes of the thst,number of representative
densities under the null can be increased by owetlam process repeated. The
critical valuesk, i =1, 2, 3 can be obtained using one of two methettiser a
systematic iterative procedure or via Simulated ealimg (SA}
(Sriananthakumar and King, 2006). Thetest can be computationally intensive,
particularly for high dimensional testing problemis1 addition, Sriananthakumar
(2013) showed that thg test may not be trustable in the presence of udalbte

nuisance parameters. In particular, Sriananthaku(@@13) investigated the
problem of testingfor a linear regression model with AR(1) errorsiagha first-
order dynamiclinear regression modelith white noise errors using marginal

likelihood basedg tests and marginal likelihood based classical (UR,and W)

tests. Sheshowed that for this testing problem the tests have good power

! See Goffe et al. (1994) for more details about SA.
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properties, particularly in the neighborhood of ttiewsen parameter point under
the alternative hypothesis where power is optimizddowever, when moving

further away from this parameter point, the powethe g test becomes less

desirable.

Begum and King (2005a) introduced a Most Mean PawdMMP) test of a
composite null based on the GNPL. Their test max@ésiaverage power subject
to controlling average size over different subsdtthe null hypothesis parameter
space. The standard approach of controlling the mmaxi size over the nuisance
parameter space is typically difficult and time soaming. Begum and King's
approach of controlling average size over sub-regicgelected to reduce
variability in size seems to be a novel idea. la tdontext of testing for MA(1)
errors against AR(1) errors in the linear regressimdel, their approach is shown
to work well. This testing problemafter reduction through invariance arguments,
becomes one dimensionddven for this case, the MMP invariant test can be
computationally intensive.Begum and King (2005b) successfully applied the
MMP test to testing higher order regression disindes, namely joint MA(1)-
MA(4) against joint AR(1)-AR(4). They note that threrease in dimension does
increase significantly the computational effortuigd to apply the test. They also
(Begum and King (2006)) considered the problemestihg for heteroscedastic
disturbances in the linear regression model whiololves nuisance parameter
space which in a one-sided infinite interval. Thast was found to have

encouraging small-sample size and power properties.

3.4 An estimated parameter approach

The problem of testing for AR(1) disturbances inlinear regression model with

lagged dependent variables was considered by Ili{i@®0). He proposed

replacing the coefficients of the lagged dependemiables with estimates and
then applying King's (1985a) point optimal test fAR(1) disturbances using

small-disturbance asymptotic critical values. In@E90) reported Monte Carlo
results showing the new test has superior smalptamowers compared to
existing tests. A modification to his choice oftical values was suggested by
King and Harris (1995) based on earlier work byd<and Wu (1991).
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The problem of testing for moving average unit rantautoregressive integrated
moving average (ARIMA) models was considered byki&men and Luukonen
(1993a, 1993b). They constructed point optimalstestd, in their more general
case, used estimated values of nuisance parameténsir test statistic. They
then derived the asymptotic distribution of th&isttstatistic to allow asymptotic

critical values to be obtained.

Their work (and also that of Shively, 1988b) waseexied by Hwang and
Schmidt (1993) to the case where the null modetaions a linear trend and so is
trend stationary. Hwang and Schmidt provide alticalues and small-sample
power for their point optimal invariant tests. &Hy (2004) constructed an
approximate point optimal invariant test of a uibt in the context of testing an
ARIMA (p-1, 1, q) process with drift against an AR, q) trend-stationary

process in which unknown nuisance parameters groed with estimates.

Gallego and Diaz (2007) extended the tests of ®aikk and Luukonen in

univariant ARIMA models to multivariate ARIMA model

This raises the question of why not replace unknowisance parameters by
estimates? If we return to the general problenesfing (1) against (2), then we
might regardd as a vector of nuisance parameters &nohight be re-arranged

and split into parameters of intere@t and those not of interest, denotéd so
that @' = (Ha', 6{;) . If we now write f (x|6) as f(x|6,,8,), the suggestion is that

a point optimal like test might be based on rejegthe null for large values of the

likelihood ratio

f (x\eal, 8.)

f(x‘5) (7)

where g, is the point at which one wishes to optimize pqv@ris the maximum

likelihood estimate off, under f(x|Hal,9b) with g, being the only parameters

that are estimated, andl is the maximum likelihood estimate & underH,.
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Unfortunately such a test is no longer optimal lbseaof the replacement of
parameters with their estimates which are stoahadtbwever, as we shall see in
Section 3.5, there can be circumstances in which dapproach provides a test

with optimal asymptotic properties.

There is also the issue of finding appropriatdaaitvalues. An approach that has
not explicitly been raised in the literature (tceethest of our knowledge) is to
exploit the parallels between (7) and the Cox ahated tests. Dastoor and Fisher
(1987, 1988) noted the link between point optimmdariant tests of regression
disturbances and Cox tests. They observed thatldss of tests can be regarded

as a class of Cox tests which have an exact disii.

The problem of finding the asymptotic distributiohthe log of (7), namely
log f (x|6,.8, )- log f (x|J) (8)

under the null hypothesis is exactly the probleat tbox (1961, 1962) considered
in his seminal papers. He proposed standardizipgy8inding or approximating
its mean and standard deviation, and treating tamdardized statistic as
asymptotically standard normal (see White (1982) o discussion on the
regularity conditions involved). Standardizing {8not always easy, but there is a
very rich literature on the application of the Capproach, see for example survey
articles by MacKinnon (1983), McAleer (1987), Gardux and Monfort (1994)
and Pesaran and Weeks (2003). The latter papdoregptwo more practical
approaches to this problem, involving the use ohuation methods and

parametric bootstrap methods.

Two important points should be borne in mind whesing this asymptotic
approach. King and McAleer (1987) found this staddzed version of the Cox
test to have very poor small sample size and pdarethe problem of testing
AR(1) disturbances against MA(1) disturbances ia linear regression model.
For a sample size of 30 at the nominal significalesel| of 5%, sizes can be as

high as 0.5 while, when simulation methods are usefind appropriate small
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sample critical values, the power of the test daes rise much above its
significance level of 0.05. As with many asymptdests, the standardization of
the original statistic can do more harm than gdatis based on poor estimates.
If a solution can be found without the standardarastep (see for example, King
(1998)), it is likely to produce much better smadimple power and size. |If
standardization is needed, then it is important tha sample size is at least 100

and preferably larger.

The second point is not to think of the densit3(x|¢9al,9b) as that of the

alternative model (as one typically would when aaectohg a Cox test). We are
just working with that as a device for constructengjood test against the more

general model given by (2).

3.5 Using an asymptotic approach

The biggest development in the last two decadesbeas the construction of
point optimal tests with the use of asymptoticsitoplify some of the problems
caused by nuisance parameters. The seminal papenisiriterature is Elliott,

Rothenberg and Stock (1996). They considered dHewing data generation

process:

ytzdt+ut’ t=11"'!T1
and

U =au, + v,

where d, is a deterministic mean componeantjs an error term with zero mean,

v, is a stationary disturbance process with mean m«b(vl,...,vT)' having
covariance matriXx . Their interest is in testing for a unit rootymely H,: a =
1 againstH,: |a| < 1. Nuisance parameters/components in this prolared, ,
u,, and . With particular assumptions abodt and u, and the restrictive

assumption thatt = o°l, Dufour and King (1991) proposed point optimal

invariant tests for this problem.
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In order to analyse the qualities of competingstestthis general problem, Elliott

et al. (1996) reparameterized the parameter uedetd

n=T(a-1

and then derived the asymptotic power envelopegusical to unity asymptotics
and point optimal tests assumirg= 77, Gaussian errors and known valuesipf
and . A major determinant of the behavior of the asiotip power envelope is

what is known about, . If d, is known or is unknown but slowly evolving, the
asymptotic power envelope remains the same.d,If= B'z, where S is an
unknowngx1 parameter vector ang is a¢x1 vector of known regressors, then

invariance arguments can be used to construct wmpdstic power envelope

using the family of point optimal invariant tests.

The authors then consider a class of feasible patimal invariant type tests that

require a choice ofy for whenu, and ¥ are unknown but whose asymptotic
power function kisses the asymptotic power envelopestructed using know,

and X and particular forms ofi,. In that sense, their tests can be regarded as

point optimal. An argument they could have used acichowledge in subsequent
papers (Elliott, Miller and Watson, 2012 and Elliahd Mdller, 2014) is to use
the LeCam limits of experiments approach to judtify efficiency of the resultant
test. (For a textbook discussion of this approaek,van der Vaart, 1998, Chapter
9 and for an econometric testing application seddétger, 2004). Mdiller (2011)
provides an excellent overview of how this altemeatapproach works for the
types of testing problems discussed in this sectfokey result is that for any
limiting experiment (model), an optimal test in thmit must be the limit of
optimal tests in the small sample setting. Thigegian insight as to how to
construct asymptotically optimal tests based onlithéing experiment (model).

Elliott et al. (1996) noted that in the casedfknown (or equivalentlyd, = 0),

Dickey and Fuller’'s (1979) test has asymptotic power equal to that of thegvow

envelope when the asymptotic power is 0.5. Theyegsome recommended
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values of77 for use in their test and also investigated its|ss@ample properties.
Their recommended tests, including a modified Dyekeller t test, were found
to largely follow their asymptotic properties, atlyh some forms of can cause
poor size and power, particularly f has a large moving average component.

Burridge and Taylor (2000) provided further analysf the power properties of
Elliott et al.’s proposed feasible test.

There have been a number of useful extensionsisfvibrk. Rothenberg and
Stock (1997) applied the methodology to a simpld&(l3 model with well-

behaved but non-normal errors. They found thae#wnptotic and small-sample
power curves and power envelopes can be sensibvéhé degree of non-

normality in the errors with heavy tailed distrilauts being a particular problem.

A critical assumption that Elliott et al. (1996) dwais that the initial errou, has
finite variance for all values aofr in the neighbourhood off = 1. This rules out
the possibility it has variancez/(l—az) for o < 1 which is often assumed for a
stationary AR(1) process. Elliott (1999) reworkib@ analysis under this latter

assumption and found it changes the class of astioglly optimal tests,

confirming that these tests are sensitive to whassumed about the distribution
of u,. Vougas (2009) discussed the relationship betvidkott's new tests and
Dufour and King’'s (1991) point optimal tests. Heygested a modification to the

latter to improve its usefulness and tabulatedcaiitvalues for two important

cases.

Xiao (2001) considered estimation and testing (@iditlg point optimal type
testing) in the Elliott et al. (1996) model undee assumptions of trending means

and general non-Gaussian disturbance distributions.

Muller and Elliott (2003) reparameterized the dymammodel considered by
Elliott (1996) et al. and showed that the powemudst unit root tests depends

(among other things) on a paramefewhich they define as the deviation of the

initial observationy, from the model’s deterministic component. For thebfem
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of testingH,: a =1, ¢ is a nuisance parameter that needs to be deditimvit

some way. They took the innovative approach ofsim@ring the class of tests
that optimize power at a chosen valuenof &, averaged by a weighting function
over the range of possiblé values. This allowed them to construct a newsclas
of tests using Elliott et al.’s approach althoulgbit main emphasis was to provide
a theoretical basis for understanding the powepgmees of a range of existing
tests. In a follow-up paper, Elliott and MullerO@a) further investigated this
dependency oné. They proposed an asymptotically efficient urobtr test,
whose power curve changes least with changes, ifor use when the researcher
knows very little about the possible magnitudeéof Wang (2014) investigated
the use of bootstrap methods to apply Elliott ets&l1996) asymptotic point
optimal test used to map out the power envelopevhith is infeasible because it

assumes Gaussian errors and known valuesupfand ~. Monte Carlo

simulations show that the bootstrap PO test isaailide test that has good small-

sample size and power properties.

The reverse problem of testing the null hypothedisstationarity against the
alternative of a unit root was considered by Mu{2005) who used the local to
unity point optimal tests to improve the asymptairoperties of the locally best

invariant tests.

Elliott et al.’'s (1996) methodology was applied Bliott and Jansson (2003) to
the problem of testing for a unit root in a var@lVhen the variable is modeled
with a number of stationary related variables. yl'sbowed that good power
gains can be obtained when such covariates arededlin the test procedure as
pointed out by Hansen (1995). This step involvea ¢onstruction of the power
envelope assuming knowledge of the nuisance paeametA feasible test was
constructed that can be applied by running veatto-gegressions. It was shown
to have good small-sample power properties andigs the asymptotic power

envelope at a chosen point.

Jansson (2005) applied the Elliott et al. (1996)Yhméology to the problem of

testing the null hypothesis of cointegration agaitise alternative of no
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cointegration in a linear dynamic model. The astpotip power envelope
assuming Gaussian errors and known nuisance paeaneas derived. He then
constructed a feasible point optimal test and ingated its asymptotic and small-
sample performance. For an extension to this wede Kurozumi and Arai
(2005).

In another application of Elliott et al.’s (1996pmoach, Elliott, Jansson and
Pesavento (2005) investigated the problem of tgdtim a unit root in a known

cointegrating vector. The feasible test they preposvas shown to be
asymptotically equivalent to a point optimal inwari test. A related paper by
Elliott and Pesavento (2009) considered the proldétmasting the null hypothesis
of no cointegration when the cointegrating variabtge known to have a unit
root. They traced out the power envelope usingtpaptimal tests that maximize
the weighted average power for different weightingser the unknown

cointegrating vector parameter space. This pravidewer bounds for the
evaluation of a range of existing tests. It isoadsother illustration of dealing
with an influential nuisance parameter by constngcttests that maximize

weighted average power at a point.

Elliott and Muller (2006b) investigated the problemtesting for time variation,
instability or breaks in regression coefficientstloé linear model. They showed
that for a wide class of persistent breaking preesesand assuming Gaussian
errors, a range of tests designed to be efficiestmall samples are asymptotically
equivalent. This allowed them to recommend an asgtically point optimal test
that is very attractive because of its ease ofiegidn and its small-sample power
properties. Lee (2009) reworked their analysis enntveaker assumptions

including the error distribution being unknown.

Using the GLS-detrending approach that is a featir¢he asymptotic point
optimal invariant tests of Elliott et al. (1996)eron and Rodriguez (2003)
extended the class of M-tests for unit roots preddsy Perron and Ng (1996) and
Ng and Perron (2001) to allow for a change of umkmdiming in the trend
function. Liu and Rodriguez (2006) extended th@rkvalong the lines of Elliott
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and Jansson (2003) to testing for a unit root engresence of a structural break of

unknown timing and proposed a new feasible poitioy test.

Gregoir (2006) applied Elliott et al.’s approachésting for the presence of a pair
of complex conjugate unit roots in a real time egri The feasible test that
resulted allowed him to propose some new, neacieffi, seasonal unit root tests.
Building on Gregoir (2006), Rodrigues and Taylod@2) extended the results of
Elliott et al. (1996) to testing for seasonal urobts. They found that the
asymptotic point optimal test of a root at a pafac spectral frequency,

asymptotically is independent of whether therewani¢ roots at other frequencies.

Moon, Perron and Phillips (2007) considered testorgunit roots in panel data
models. They constructed the local asymptotic poaverelope under a range of
scenarios and suggested a point optimal invariamepunit root test for each
case. This was extended by Moon, Perron and phi(R014) to allow for the

possibility of serially correlated errors.

The choice of point at which asymptotic power idimzed in Elliott et al.’s
(1996) approach, is driven by asymptotic considenat Broda, Carstensen and
Paolella (2009) asked if there are small-samplesidenations that can be used to
help improve power. They showed there are advastagexpressing the various
tests as ratios of quadratic forms in normal vaeisb This allowed them to apply
Juhl and Xiao’s (2003) idea of using a power loggegon to determine the
chosen point under the alternative hypothesis. yTdieo showed that there are
advantages in using recursive GLS rather than cdioreal GLS in the feasible

test.

Finally, Elliott et al.’'s (1996) emphasis on thewmy envelope and the small
sample point optimal test allowing the power engelto be traced out has led to
a new standard in the evaluation of new tests, ithtd include a comparison of

the new test’s power with a particular power enpelo
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3.6 Integrating out nuisance par ameters

Elliott, Mdller and Watson (2012) used a weightifumction to integrate out
nuisance parameters under the alternative hypatheBhis results in a test that
maximizes average power and any weighting funatem be used. For nuisance
parameters under the null hypothesis, this appragadgnires considerable care
because as noted in Section 3.3, the weightingtiumameeds to be the least
favourable distribution. Elliott et al. (2012) jp@se an approximate least
favourable distribution be used and that it be eho® minimize power at the
chosen point (a requirement of the least favourab#ribution). Muller and
Watson (2013) apply this approach to cointegratiesting while Elliott and
Muller (2014) apply it to the problem of testinggogheses about the pre and post
break values of a parameter when there is a simgdak in a time series with
unknown timing. A third application is provided buller (2014) and involves

heteroscedasticity and autocorrelation standaatsfor time series inference.

4. Point optimal testing against two-sided and multi-dimensional alter natives
Andrews, Moreira and Stock (2006) considered tvdedi testing of the
coefficient of a single included endogenous regrnessan instrumental variables
regression. They constructed a two-sided poweelepe for invariant similar
tests via point optimal invariant similar two-sidéelst. This allowed them to
assess the properties of a range of existing teslsmake recommendations on
which are best to use. Their two-sided power ep&lwas obtained via a class of
two-point optimal invariant tests which involve niazing the average power at
two chosen points, one on each side of the nulbthgsis. Care needs to be taken
in how these points are chosen — they used an asgimpfficiency requirement.
They also briefly mentioned two other approachescdostructing two-sided
power envelopes, both of which give similar (or theme) power envelopes.
These findings were extended to the class of nomlai tests by Andrews,
Moreira and Stock (2008).

Dufour and Iglesias (2008) suggested a novel agprda point optimal (and
locally best) testing involving a potentially mulitmensional composite
alternative. Their approach requires splitting saenple into two parts, a smaller

sample (approximately 10%) that is used to decil¢he alternative hypothesis
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point for the point optimal test and the remaindéthe sample that is used to
conduct the test. The alternative hypothesis pa@ntletermined either via a
consistent estimator (if one is known to exist)bgrmaximizing the asymptotic

power. They called this the split-sample Montel@€adaptive optimal test and
demonstrated its application to a range of votgtithodels with Gaussian or
heavy-tailed errors. Their test has attractivéuiess in that it does not require the
existence of moments and can be applied in a rafigeettings such as non-
normality and non-stationarity. The negative is fower loss that comes from
not using all the observations in the actual t@3te hope is that this loss will be
small and more than compensated by optimizing powih the remaining

observations at the most likely alternative hypsih@oint.

Dufour and Taamouti (2010) constructed point optisign-based tests in linear
and nonlinear regression models that are valid wngen-normality and

heteroscedasticity of unknown form. A split-samapgroach is used in order to
choose the alternative point in a way that brirfgs power curve close to the

power envelope.

5 Fertileareasfor futureresearch

There is no doubt that the theory of point optinesting has come a long way
since 1987. The use of power envelopes as a bexkHor the power function of
new tests has become more prevalent, particulariythe unit root testing
literature. Clearly learning how best to deal witlisance parameters has been a
significant thrust of the literature. A secondusghat to date has received very
little attention (see the previous section), is hitve principle of point optimal
testing might best be employed against two-sided amulti-dimensional

alternatives.

5.1 Dealing with nuisance parameters under the null hypothesis
It is our view that different approaches to hamgllimuisance parameters might be
needed depending on whether they occur under th@malternative hypothesis.

We turn first to the null hypothesis case.
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Using the notation of Section 3.2, assume afterpiablem has been reduced
down to its smallest dimensions through invariaaed other arguments, the null
hypothesis is given by (1). Effectively} is a vector of nuisance parameters.
The problem withd is the difficulty it can cause one when contralithe
probability of a Type | error (PTIE). If the poimptimal test of interest is a
similar test (has the same PTIE for all parametaintp, 6, under the null
hypothesis), there is no issue. If there are geaai point optimal tests to choose

from, say of the form of (4) and indexed By , then one might choose th&
value that maximizes power of the resultant testgat(An example of this

approach of choosing nuisance parameter valuesatonmze power is choosing
band-width parameters used in a test statistic;Gae and Gijbels, 2008, Sun,
Phillips and Jin, 2008, Gao et al., 2009a, 2009bGao and King, 2014).

A more likely scenario is that the preferred teatistic is non-similar. The next
obvious approach is to see if asymptotic arguméasing Mdaller, 2011 for
guidance) allow one to replace the remaining nuisgrarameters with estimates
for an asymptotically optimal test. In the remandf this section, we will
assume this is not the case. The conventional apprtm non-similar testing is to
find the critical value that makes the PTIE lesantlor equal to the desired test
size (say 5%) over the entire null hypothesis patamspaceA. If the null

hypothesis holds, thed will have a true value which we will denote &s If the
desired size of the test & and the PTIE ab, is a,, then rather than applying an
a level test, we are applying am, level test with a consequential loss in power.
A test of the form of (4) is no longer point optimb a, < a because of this
power loss. It could be that, is close to zero which might result in a rather

extreme drop in power. One solution already disediss Section 3.2 (and by

Elliott et al., 2012) is to look for the least fawable distribution over the

parameter spacehA(J). Lehmann and Romano (2005) note that we are
essentially looking for the weighting functioh, (5) that gives the lowest power

at 6. This seems to be the opposite of what we shbaldioing, particularly

given there is information in the observed sampleabout what likelyd, values
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might be when the null hypothesis is true. If weew what 9, was, then the

appropriate test would be (4) witd = J, and we could easily find the

appropriate critical valueg, by simulating the null distribution fronfi (x|50).

Typically J, is unknown but almost always we can find its pastedensity

function, at least empirically. This might be usedveragep values conditional
on differentd, values as suggested by King (1996). Whether ther®ther ways
of using the information in the data abodf to help build a powerful test is

clearly an important area for future research. iaen idea is that we only need

to worry about controlling the size of a test feasonably likelyd, values. As the

sample size grows, this neighbourhood of conceoulshshrink to the true value
Op-

5.2 Dealing with nuisance parameters under the alter native hypothesis
Turning to the problem of nuisance parameters uthierlternative hypothesis,
we think the most fruitful approach is to optimizwerage power over the

nuisance parameter space at the chosen value patameter vector of interest.

Using the notation of Section 3.4, suppoge = (&,,6,) where 6, is the
parameter vector of interest a}] is the nuisance parameter vector. We now
write f(x|6) as f(x|6,.6,) and let f,(6,) be an appropriate (or chosen)

weighting function over thé], parameter space which we will denote@s

If we denote the rejection region (the completeo$et values for which the null

hypothesis is rejected) of a test of (1) againgb{2w, then its PTIE is given by
[ f(x|d)ax

and its power is given by

[ f(x6..8 )dx
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which is clearly a function of, and g,. The power averaged bf; (4,) over ©,
is therefore

[ [ f(46,.6)0xf,(8,)d8,

=[ [ 1(x/6,.6,)dx f,(8,)d8, dx
:J. fa(x|9a) adx (9)
where f, (x|6,) = J' f(x|6,.6,) f,(6,)d6, . 10)

O

Observe that (9) can be interpreted as the powéneotest with rejection region

@ when the data has been generated from the distribwith density f, (|8, )

given by (10).

As noted by Begum and King (2005a, p 1083), the Ghmplies that the test of
H,: d = 9, against (2) that maximizes average power o@gat 6, = 6,

involves rejectingH, for

fL,(48,)

f(x[3) ()

wherec is the appropriate critical value.

It may be that there is a closed form solutionh® integral in (10). Iffb(Hb) is

considered to be a prior then the literature orjugate prior distributions might
help find a class of weighting functiorf:g(eb) for which a closed form of (10) is

known.

If a closed form solution to (11) is not availableg can proceed as follows. Let
6,1 - 6, be asimple random sample frofp(@b)of size m, then via Monte

Carlo integration, the left-hand side of (11) canapproximated by
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18 f(X64.65)

miz_;‘ f(x|3) (12)

and the test that maximizes average power @eat 6, = 8, involves rejecting
the null hypothesis for large values of (12). ded be, the critical value can be

found by simulating (12) for repeated samples xf from the f(x|6l)

distribution.

The literature on optimizing average power doegesgthat some care is needed

in choosing f, (4,). Future research is needed to see how well tiess® might

work in practice.

5.3 Handling multi-dimensional parameter spaces under the alternative
hypothesis
With respect to multidimensional testing, we wlilistrate a potential approach to
point optimal testing by considering the problenmesdtingd = 0 againstd # 0
when x has densityf (x|6'), whered is gx1 and©® is R*. Observe tha# can
be reparameterized into polar coordina(te,srg,...,%_l)', r >0, g U [071] ]
=1,...,0-2 andg_, 1 [0,27], via

(90)1/2

6 =rcosy,

j-1
g, :(Usinqjcosqp, 2< j £9g-1
g-1

6, = Dsin(q.

The problem of testing = 0 againstd #0 now becomes one of testing whether

the scalar = 0 againstr > 0, in the presence of nuisance parameggrs.., ¢,

which collectively determine a direction from theigin in R space. For

Page 28 of 42



examples of this kind of transformation being uBgfused in hypothesis testing,
see King and Shively (1993) and King and Edwar&@s89).

Along the lines of (11), a test can be construdtest has maximum average

power across the nuisance parameters spaceFat . If the weighting function

is chosen to be uniform overall direction from trgin in R? space, then our test
statistic (12) becomes the sum of likelihood ratiesmpled over random

directions from@ = 0. The choicer, could be that which makes the average

power atr = r, equal to 0.75. Again further research is needeskee how well

this class of optimal tests might work in practice.

6 Concluding Remarks

As the list of references that follow attest, thees been considerable innovation
and research on point optimal testing since 198#igh proportion of this new
literature has been in the very highly researchied af unit root testing. This has
proved to be an extremely difficult testing problémat point optimal testing and
particularly its application in a local-to-unity yasptotic setting by Elliott et al.
(1996) and more recently Muller (2011) have helpelye, although we continue
to see innovations that result in power improversern particular, Broda et al.
(2009) have reminded us of the importance of sswihple consideration on
power by using Juhl and Xiao’s (2003) optimal apgioto selecting the point at
which power is optimized and recursive GLS detregdiather than conventional

GLS detrending in the feasible test.

Juhl and Xiao’s investigation of “optimal” point mal testing does provide
some guidance on the application of Davies’ (196&g optimal test. We now
have a better idea of what level of power one shohbose to optimize power at.
Davies (1969) originally recommended 0.8, King (@88 suggested 0.65 and
many other researchers have used 0.5. We now rmeeath 0.75 as a

consequence of Juhl and Xiao’s (2003) finding.
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The split sample testing approach to point optiteating suggested by Dufour
and Iglesias (2008) may have merit, but more resesrneeded to see if this is
indeed the case. The biggest issue is where itotlsplsample between that used
to choose the point at which power is “optimizeditiahat used to conduct the
test. Juhl and Xiao’s (2003) optimal approach ddm used to determine the
optimal split as well as the point at which power‘optimized”. The resulting
power function could then be compared with othdanfpoptimal tests which use
the full sample for testing to see whether the pdass from splitting the sample

is too great. We guess it might be.

The modern literature on point optimal testing pesvided a greater emphasis on
the power envelope. A number of recent papers iogonew tests have
compared the power of their test with a particplawer envelope. This approach

to test evaluation should be encouraged wherelgessi

In this paper we have made a series of suggestwnfuture research. These
include the need to handle nuisance parametersreiiffly under the null and
alternative hypotheses. The literature on the &ukrelated non-nested tests may
help with finding appropriate critical values ifinance parameters are replaced
with their maximum likelihood estimates. Optimigiaverage power across the
nuisance parameter space under the alternativéheatcthiosen point for the
parameter(s) of interest, in our view, is an apgnoaorthy of further scrutiny.
We give a general formula for the construction wéhstests in a general setting.
We also discuss how a simple transformation fromteS&n to polar coordinates
can transform a multivariate testing problem intooe-sided scalar testing

problem with nuisance parameters that is amenaldacdh a solution.
It is fair to conclude from our review of the retéditerature and our suggestions

for new generic point optimal tests, that pointimt testing has much greater

applicability than was apparent in 1987.
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